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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Successful Use Case Applications of Artificial Intelligence  
in the Steel Industry

Steelmaking is a complex industry 
in which each process in the produc-
tion chain generates a vast amount of 
data that can provide valuable insight 
when properly managed. Data origi-
nate primarily from hundreds of field 
sensors, then they are conveyed both 
vertically along the hierarchical pyra-
mid of the plant automation, from 
level 1 to level 3, and horizontally 
through the supply chain. All these 
data contain information and repre-
sent the fuel that feeds all activities 
where knowledge buildup and con-
solidation is needed, ranging from 
the physical and metallurgical models 
up to the optimization strategies for 
production workflows.

Raw data, however, similar to fuel 
for engines, does not provide itself 
any information. Knowledge has to 
be extracted from data, hence the 
need to choose the appropriate tools 
to ingest, store, process and interpret 
data in a qualitative and quantitative 
way, a field that nowadays is popularly 
known as data science. As the com-
plexity and number of components in 
production of industrial automation 
systems have been increasing, knowl-
edge extraction from data plays a core 
part in transforming the industrial 
plant into an intelligent smart factory 
with the support of the latest digital 
technologies.

In the vision of Industry 4.0 evo-
lution, machinery and equipment 
will have the ability to control and 
improve processes through self-opti-
mization and autonomous decision-
making, resulting in improvements 
in maintenance, supply chain, safety, 
remote diagnosis, real-time control 
with self-organized and autonomous 
management, transparency, predict-
ability, effectiveness, and efficiency.

All the concepts listed above 
include artificial intelligence (AI) as 
an integral component for proper 

achievement. Danieli’s strategic 
effort to include AI technologies in 
DIGI&MET products paves the way 
for an intelligent plant to optimize 
the resources and minimize the capi-
tal expenditure, thanks to a seam-
lessly integrated interface architec-
ture across the vertical and horizontal 
levels of production in the domain of 
metals manufacturing.

Artificial Intelligence in the 
Steel Industry
The longstanding technical challeng-
es, which to some extent are still per-
sisting, such as rapid increase in the 
scale and speed of production, reduc-
tion of transformation costs through 
energy and process optimization, 
and high-quality products with value- 
added services, have resulted in deep 
analysis and usage of control and sys-
tem technologies. These systems must 
adhere to accuracy requirements in 
order to meet strict specific standards 
for the production environment. 

Steelmaking represents the perfect 
playground for an approach strongly 
based on data exploitation. On one 
hand, one has to deal with highly 
complex and multi-physics processes, 
where not all input variables and cor-
relations are exactly known and where 
environmental conditions can change 
over time. On the other hand, process 
decisions are often made by operators, 
depending on their knowledge and 
experience. Instilling intelligence and 
knowledge into automation systems is 
therefore of paramount importance 
toward the achievement of the goal of 
a smart plant.

John McCarthy in the early 1950s 
coined the term artificial intelligence 
referring to “the science and engineer-
ing of making intelligent machines.”1 
In general, however, it is extremely 
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hard to define the term AI. What is nowadays commonly 
meant for AI is what is more appropriately denoted as 

“narrow artificial intelligence,” that is the capability of a 
software/machine to perform certain specific tasks that 
in the past could only be carried out by humans. Popular 
examples are represented by natural language process-
ing, image recognition, game playing, etc.

The interest toward narrow AI has seen an expo-
nential increase in the last 10 years, mainly due to the 
widespread adoption of machine learning (ML). ML is a 
field of AI that aims at making machines “able to learn 
without being explicitly programmed” by automati-
cally extracting useful patterns from data. Breakthrough 
innovations in data availability and computing power 
(graphics processing unit (GPU), cloud computing) lead 
ML toward the center of the transition to a new way of 
conceiving AI. Machines not only can learn to execute 
common actions like humans, but they can also think 
differently, such as finding patterns in high-dimensional 
data that the human brain cannot conceive.

ML and AI play extremely effective roles in the steel 
industry. First of all, AI can be used to allow machines 
performing all sorts of routinely based or dangerous 
actions that are traditionally carried out by operators, 
thus giving the opportunity to move humans to less risky 
tasks with more added value. Then, ML can be used 
to complement and enhance current process models. 
Classical models, indeed, are generally based on ideal-
ized systems and lack sufficient precision in complex 
tasks or dynamic environments. Physical models con-
sider only specific sets of process variables, disregarding 
the information extracted from heterogeneous data 
sources. Under these circumstances, ML is very effective 
as the algorithms can systematically extract process rela-
tionships out of the data. 

AI and ML indeed have been extensively applied 
in various fields of engineering including image pro-
cessing, automatic control and data mining.2,3 Some 
examples from literature are represented by a data-
driven ML technique4 to predict secondary deformation 
mechanisms in steel. An ML application methodology5 
to identify microstructures of steel based on crystal-
lographic features obtained by electron backscattering 
diffraction; a novel method for steel surface defect clas-
sification6 using ML techniques; a dynamic data-driven 
model7 for predicting strip temperature in a continuous 
annealing line heating process; and an ML methodologi-
cal approach for diagnosing cooling temperature devia-
tion defects8 that consists of four phases: data structur-
ing, association identification, statistical derivation and 
classification.

Industry-specific ML applications such as predictive 
maintenance, condition monitoring, process optimiza-
tion and scheduling, inventory planning, pattern rec-
ognition, root-cause analysis, and smart management 
provide meaningful use cases where insight can be gen-
erated from the data to take appropriate actions with the 
target of minimizing CapEx and OpEx.

Danieli Machine Learning Architecture

Danieli Automation has developed a solution to foster a 
data-driven approach in the steel industry. This solution 
is based on Q3-Intelligence, a custom business intelli-
gence platform for metals production. Q3-Intelligence 
is a data analysis framework that concretizes the revolu-
tionary triggers of the data-driven era, data availability 
and data mining into the steel industry. The framework 
provides modules and features to extract data from het-
erogeneous sources across the plant and to store them in 

a unique and standardized access 
point, thus realizing the vertical 
and horizontal integration of infor-
mation (Fig. 1). Later, to provide a 
continuous monitoring of the plant 
process and to feed the data min-
ing process, information can be 
extracted from the raw data, con-
verted into knowledge, and finally 
turned into actions. 

Data integration and knowledge 
extraction are the pillars for the 
realization of the smart plant vision. 
The IT infrastructure, instead, must 
be considered a dynamic compo-
nent, able to change and adapt to 
the technological transformations. 
For this reason, DIGI&MET has 
recently introduced a new architec-
ture dedicated to ML models devel-
opment and deployment. In fact, Q3-Intelligence.

Figure 1
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implementation of AI application inside the steelmaking 
environment poses a number of challenges that must be 
addressed. For instance, due to the complexity inherent 
in the process and to the vast amount of heterogeneous 
data generated, acquisition and analysis of big quantities 
of data from varied sources is a challenging task.

A modern steelmaking plant generates a huge quan-
tity of data compared to the past, due to the increased 
number of sensors installed in all the areas of the plant, 
as well as to the presence of new types of data sources 
like video feeds or audio recordings. Based on their 
most recent installation experiences, the authors can 
reasonably suggest that a modern plant generates several 
terabytes of data per year. The biggest challenge for the 
business is to ingest data at a reasonable speed, enabling 
for further efficient processing, so that data are priori-
tized and analyzed to improve business decisions.

In order to overcome this challenge, the data acquisi-
tion and storage philosophy are based on the concept 
of a data lake. The data is stored in the same format as 
produced, or with minimal transformation before stor-
age, eventually resulting in a shorter time frame from 
production to storage, with small resources required for 
the data acquisition step. Data is stored in raw format, 
therefore preserving all information, and processed at 
a later stage, allowing the flexibility factor for each dif-
ferent application. Data scientists can thus exploit this 
advanced data processing capability to analyze the data 
and develop ML models, e.g., for prediction or classifica-
tion tasks.

The complexity involved in data management, design 
and development of ML algorithms, training and test 
processes, and information extraction from data accord-
ing to the designed model requires high-performance 
computing infrastructures. For this reason, Danieli 
Automation architecture supports the use of computing 
resources from the cloud, in order to perform, in hours, 
processing tasks consuming weeks with a traditional 
architecture, reducing complexity 
and time and thus enhancing the 
benefit to the core business. The 
architecture is designed in such a 
way that the data transferred to the 
cloud is securely encrypted with a 
defined lifespan. This encryption 
ensures cybersecurity so that no one 
can intercept the data while being 
processed and the data is no longer 
accessible for other purposes once 
the algorithms are trained. This 
architecture (Fig. 2), realized in 
collaboration with leading service 
cloud providers with robust and 
secure services, has been success-
fully tested in several environments.

Architectures and applications 
based on cloud computing are still 

not widely accepted in the steelmaking environment 
and more in general in the manufacturing sector. The 
computational ability is an added advantage during the 
development phase, but it is often difficult to use during 
the production phase. The real-time process data is dif-
ficult to obtain during this phase as it limits the indepen-
dence of the plant adding potential failure points that 
can lead to decrease in the production efficacy. 

In order to overcome these hindrances, the Danieli 
architecture includes also on-premises modules, an ML 
server and an ML Edge. The first component allows run-
ning multiple ML models in the plant communicating 
with them through a web interface. Ensuring on-prem-
ises the same advanced inference capabilities offered by 
cloud providers, this solution guarantees a state-of-the-
art service while maintaining the total independence of 
the plant automation network from the availability of an 
internet connection.

In order to use ML as part of fast automation control 
loops, however, this server is not enough, given the 
very low latency required to compute signals that are 
often sampled at high frequency. Hence, an ML Edge 
machine is added to the architecture for model deploy-
ment. These machines are small but powerful computers 
programmed to perform only the task of computing the 
results of a specific ML model with the minimal latency 
and the maximum throughput. This allows processing 
ML models in streaming mode, one sample at a time, 
even at very high sampling rates. These modules are 
completely independent and enable machines to become 
smart components.

AI-Based Applications

Starting from the analysis of the requirements of several 
customers, Danieli Automation designed, developed and 
deployed several applications based on AI. This section 

Danieli machine learning (ML) architecture (on-premises and cloud).

Figure 2
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discusses three recent use cases that provide a concrete 
realization of the concepts presented so far.

Q-CLOG — Q-CLOG is a predictive model for on-line 
estimation of clogging probability in continuous casting 
in advance respect to actual casting start, from the evalu-
ation of process variables collected from scrap up to vac-
uum degassing (VD) treatment, in order to give in real 
time a decision support tool to the operator even before 
sending the ladle to the caster.9 In order to achieve this 
target, a data-driven analysis was implemented based on 
data science processes for the assessment of the correla-
tions existing between process variables acquired from 
the meltshop route and the tendency for clogging or ero-
sion of the flow control devices in two casting machines.

Since a direct observation or measurement of the 
clogging level inside the nozzle is not possible with exist-
ing techniques, a method to detect the occurrence of 
the clogging event and to categorize the various heats 
produced, even from the past, based on their level of 
castability was provided. To analyze historical data, and 
to give a real-time indication of the ongoing clogging 
condition, an identification algorithm was developed 
based on process signals from the continuous casting 
machine (CCM) automation (Fig. 3). The clogging 
index estimated with the detection model is then used 
as a reference variable in a supervised learning classifica-
tion problem. Preliminary steps such as data preparation, 
cleaning and analysis of involved variables with the sup-
port of process experts were carried out for the required 
predictive model. Defining clogging occurrence for a 
heat as the detection of a clogging level higher than a 
pre-defined threshold on at least one strand that was 
open during casting, it was found that clogging can be 
defined as a rare event since around 11.9% of the heats 
analyzed were hit, with some differences between the 
two casting machines.

The probability of clogging events depends on the 
steel chemistry; one piece of evidence collected from the 
plant was the comparatively high incidence of clogging 
in re-sulfurized steels, as can be seen from Table 1.

Empirical findings have been transformed into req-
uisites for the development of the model, with the 
definition of all the variables that can have an effect on 
the process and with special regard to those that can 
influence evolution of steel/slag equilibrium and non-
metallic inclusions. For instance, operating practices are 
carried out during secondary metallurgy treatment with 
the target of improving castability, such as the addition 
of SiCa wire. All data related to those operations were 
recorded in Q3-Intelligence and then analyzed with 
dedicated tools. One interesting result of this analysis 
was that SiCa addition effectively reduces clogging 
occurrence, but the effect is different depending on the 
position of the heat in casting sequence and on the over-
all length of the sequence. This effect is clearly visible in 
Fig. 4, where the density distribution of SiCa wire added 
in VD is plotted for the first heat in sequence and for 
different values of casting sequence length. In the figure, 
heats with clogging are drawn in red solid lines, while 
heats without clogging in blue dashed lines.

Based on the above considerations, an input data 
set was defined using a mixed statistical-engineering 
approach. Due to the high complexity of the phenom-
enon and the possibility that process variables that are 
far from the caster can also influence on clogging occur-
rence, a process-based analysis was necessary to compile 
a preliminary list of potential candidate parameters for 
the model. This list was then refined with a data-driven 
analysis aimed at assessing the strength of the relation-
ship between the parameter and the final clogging 
index; all the variables with a low level of relevance were 
removed from the data set.

A set of predictive experiments based on regres-
sion classification models was prepared where clogging 

A schema of the clogging predictive model.

Figure 3 Table 1
Distribution of Clogging According 
to Casting Machine and Steel Type 
(21,927 Heats)

Steel group CCM 1 CCM 2

High-S 16.40% 19.71%

Other 1.12% 2.80%

Total 8.60% 15.80%

http://www.aist.org


DE
C 

20
19

  I I
RO

N 
&

 S
TE

EL
 T

EC
HN

OL
OG

Y 
I A

IS
T.

OR
G

48 Digital Transformations

presence was modeled on a set of process variables col-
lected before casting start. The actual data set used for 
predictive model training is made of 50 process variables 
grouped according to different process areas and steps, 
chemical analysis, materials additions, temperature sam-
ples, processing, and ladle transport times. The variables 
have been measured on the entire set of more than 
21,000 available heats from January 2015 and several 
classification models have been tested to find the best fit. 
In the end, the selected model was a gradient boosting 
classification that was found to be the most suitable to 
approximate the non-linear relationship between the list 
of predictors and the target variable.

The performance of the model is quite good in terms 
of heats actually identified as potentially subjected to 
clogging, with an overall area under the curve (AUC) 
equal to 0.8. In detail, results are better in the predic-
tion of events of clogging that involve at least 75% of 
the strands active in the caster: in this case, the model 
is able to identify 88% of clogged heats. Performance 
is slightly decreased when it is required to also iden-
tify heats with “light” clogging issues, defined as those 
with only one clogged strand. In this case, accuracy is 
lowered to 75% with the identification of clogging in 
62% of the cases. The model also gave confirmation to 

Effect on clogging of SiCa wire amount in VD for different casting sequence lengths.

Figure 4
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most of the hypotheses reported from the literature9 
and the longstanding experience from the production 
site, such as the influence on clogging tendency of SiCa, 
Al, S and CaO additions, but also empirical findings 
from the plant, such as the difference in castability of 
steel produced from the two electrical furnaces pres-
ent in the plant and the influence of production route 
and overall treatment times. In Fig. 5, a list of the most 
relevant variables is displayed, with a ranking defined by 
the number of times a variable is used in the set of clas-
sification trees.10

For the best management of advanced data analyt-
ics projects, the possibility for the data science team 
to monitor and evaluate the outcome of the predictive 
experiments is also of paramount importance. This was 
accomplished both through on-line services, giving the 
operator the necessary predictions to support operative 
production decisions, and on the other side with tools 
and services for continuous check and improvement of 
data quality and models accuracy. In Fig. 6, a web dash-
board is presented to verify the model performance and 
to identify cases where accuracy was lower than expected 
and to supply useful feedback for data validation or 
model recalibration.

Q-TEMP VD — Q-TEMP VD is designed to show VD oper-
ators real-time information about the temperature of 
the steel during the degassing process. The application 

was created to provide a tool to measure steel tempera-
ture in real time using a contactless device. The idea 
is to employ a pyrometer to read the steel temperature 
through the open eye in the slag during the whole degas-
sing process, from vacuum phase to atmospheric phase.

The usage of a pyrometer, however, is not sufficient, as 
it does not guarantee the desired reliability of the read-
ings, since the signal is not available during some of the 
phases (at the start and end of the process, or during 
process deviations). In addition, there are moments in 
the process where the signal, even if available, cannot 
be completely trusted due to the erratic nature of the 
process itself.

This problem is solved by coupling the pyrometer with 
a temperature estimation model based on ML (Fig. 7), 
which uses data recorded from the process in the past 
to apply a correction to the real-time pyrometer reading. 

Another AI functionality is the ability of understand-
ing the status of the stirring plugs and quickly diagnose 
potential issues in order to help maintaining the maxi-
mum stirring and process efficiency.

The package also provides operators information 
about the normal working range of stirring plugs, and 
helps to identify deviations from the optimal process 
condition (Fig. 8). The application creates fingerprints 
of the normal plugs’ behavior, described as a function 
that associates the flowrate to the pressure for every 
working condition.

Dashboard for real-time monitoring of predictive models accuracy.

Figure 6
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As Q-TEMP VD relies on the ability of the pyrometer 
signal to read the temperature of the steel, by pointing at 
a position where the slag has an open eye on the under-
lying steel bath, it is important to see and track this 
opening. For this reason, the model is able to detect the 
size and position of the slag open eye through real-time 
analysis of a video feed. This gives the system unparal-
leled precision in the estimation of the temperatures, 
while giving the operators a clear view on this part of the 
process (Fig. 9). This open eye detection is performed 
through image processing algorithms that are able to 
respond precisely and in a short time. The information 
about the total area of open eye can also be trended and 
used as an important variable to understand how the 
VD is actually performing and have a correct use of the 
stirring gas during the degassing 
phase.

It is important to note that 
Q-TEMP VD is a self-learning 
model. While it performs its esti-
mation, it continuously records the 
data from the field and stores it to 
a database for later analysis. The 
model is able to detect a perfor-
mance loss in its detection capabili-
ties, which can be caused by a list of 
conditions that can change regard-
ing how the process is executed, or 
in the production mix.

When the system finds such devi-
ations from the optimal perfor-
mance, it can use the most recent 
data to improve its knowledge of 
the vacuum degassing process and 
deliver the most accurate tempera-
ture predictions (Fig. 10).

Q-TEMP VD is currently installed in four plants 
worldwide and in all the installations the system is able 
to guarantee predictions with an error standard devia-
tion below 5°C, which is the accuracy threshold usually 
required by the process.

AI for Surface Defects Identification

Machine vision plays a fundamental role in industrial 
automation, enhancing the flexibility of the machines 
making possible the recognition and the understanding 
of the content of an image without the intervention of 
a human being. Typical examples are related to process 
control, robot handling and quality control.

Real-time measured and predicted temperature of the heat.

Figure 7

Comparison of output flow pressure fingerprint calculation for both plugs to the 
real-time plugs.

Figure 8
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In recent years, the development of new 
AI techniques has contributed to a deci-
sive improvement in the performance of 
machine vision applications. Thanks to the 
use of GPUs, the adoption of neural net-
works with very deep architectures (deep 
learning) has become feasible and more 
effective, determining the re-flourish of 
ML techniques in this field. These neural 
networks, if properly trained, automatically 
identify the fundamental features and the 
patterns that allow performing classifica-
tion or identification of objects (features 
extraction). This scenario brings a para-
digm shift in computer vision: ML algo-
rithms, indeed, do not need to rely on very 
complex hand-crafted features and rules, 
but they extract relationships directly from 
data, in a way analogous to the learning pro-
cess of humans. Mainly for this reason, deep 
learning, and in particular convolutional 
neural networks (CNNs), has proved to be 
particularly effective in image recognition 
tasks, reaching levels of accuracy in some 
cases higher than those of a human being.

One of the key applications for machine 
vision in the steel industry is the identifica-
tion of surface defects in rolled and cast 
products. The defect detection is of funda-
mental importance for the quality control 
since it ultimately determines if a product is 
suitable for the market. Besides, the defect 
classification is becoming more and more 
important, making possible the correlation 
of the defects information with the process 
variables measured during production; the 
goal is to perform a root-cause analysis and 
eventually identify the origin of the defect, 
being able to intervene in real time, safe-
guarding the quality of the production.

The classification of the defects proves to be more 
complex at the algorithmic level than the mere detec-
tion. This is substantial because it is not always straight-
forward to identify a set of rules or a physical quantity 
that allows discerning the type of defect, e.g., a scratch 
from a crack. On the other hand, an appropriately 
trained human operator can easily carry out these tasks. 
Deep learning wants to leverage this mechanism, which 
is to define algorithms that have a learning approach 
similar to that of human beings. 

The following section discusses two recent case stud-
ies that address defects detection and classification by 
means of AI techniques.

Defects Classification From HiNSPECT Data — The 
HiNSPECT system is a product surface analysis system 
that automatically detects defects in wire rods and rolled 

bars during the hot rolling process from images collect-
ed in real time. The operating principle is the 3D recon-
struction of the surface of the rolled product by illumi-
nating it with two light sources emitted from different 
directions. This 3D reconstruction technique, known as 
shape from shading, allows surface discontinuities to be 
detected, therefore identifying and delimiting the defect.

In 2017, Danieli Automation began to test the use of 
AI in order to enhance the performance of the detection 
system, with the scope of lowering the number of false 
positives and to accurately classify the spotted defects.11 
The AI algorithm implemented a CNN architecture, 
which is able not only to classify a given defect according 
to a set of classes, but also to provide a bounding box for 
localization. Fig. 11 shows an example of how the CNN 
is able to accurately locate and distinguish two different 
types of defects. 

Training performance of each ML model.

Figure 10

OpenEye Image analysis algorithm.

Figure 9

http://www.aist.org


DE
C 

20
19

  I I
RO

N 
&

 S
TE

EL
 T

EC
HN

OL
OG

Y 
I A

IS
T.

OR
G

52 Digital Transformations

After about one year of testing, it was estimated that 
the CNN algorithm reaches an accuracy index higher 
than 85%, that is, more than 85% of the detected 
defects are correctly classified for each defect class. To 
reach high values of accuracy, however, as common to 
ML algorithms, large data sets of training examples are 
required. Also for this reason, Danieli Automation has 
decided to provide the AI module of HiNSPECT using 
a cloud technology. The working principle is as follows: 
the collected defect images are securely transmitted to 
the AI computing center. These images are then pro-
cessed by the deep learning model, which checks the 
consistency of the defect, removes the false positives and 
classifies the defects according to the established classes. 
Results are then sent back to the plant and integrated in 
L2 or L3 systems. The system can support a cloud-based 
prediction thanks to the fact that only images of identi-
fied defects (through the 3D reconstruction) are sent to 
the AI service, thus limiting the data exchange over the 
web.11

A cloud-based AI classifier has several advantages 
with respect to an on-premises solution: first of all, it 
allows the computation complexity to move to a unique 
data center that can be appropriately industrialized 
to support heavy workloads; this relieves the customer 
from a high initial cost for the hardware. Moreover, ML 

algorithms can be constantly retrained on 
new images and made available in real time 
to the plant. 

Defects Detection and Classification Q-VID 
Bloom Inspection (Q-VID BLI) — Independently 
from the image acquisition system, the 
same methodologies and algorithms can 
be applied to images coming from low-cost 
devices. On the one hand, the HiNSPECT is 
a high-performance measuring system, spe-
cifically designed for the defect detection in 

real-time quality control of a rolling mill production. On 
the other hand, defect detection and classification can 
be demanded during a quality spot check of the finished 
products, especially for big products, which are difficult 
to move, and where the control should be done by the 
operators walking through the warehouse. A significant 
test case is the quality check of blooms at the end of the 
casting process. In this case, the products are difficult 
to move and so a portable device, e.g., a smartphone or 
a tablet, can be profitably adopted to collect pictures 
around the warehouse. The quality control is made by 
operators who verify the presence of defects in the cross-
section of the material. In the current workflow, the 
detection is based on a visual inspection and it is strongly 
related to the experience of the operator. Once the 
operator has identified the defect, the defect needs to 
be annotated on paper, which can introduce a possible 
lack of information and accuracy. To improve the accu-
racy of the annotation, by reducing the source of errors, 
it is possible to acquire images of the defected area by 
using a portable device. Then, once images are collected, 
AI techniques can be used to identify the position and 
the dimension of the defects. The algorithm that has 
been chosen for this task is again a CNN; for this par-
ticular case, the CNN is trained to solve a segmentation 
problem, i.e., the network is able to reproduce a mask 

Defect localization and classification by convolutional neural network (CNN).

Figure 11

Scheme that represents the working 
principle of the application.

Figure 12

The image shows the segmentation of a defect as predicted by the CNN.

Figure 13
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of the original image where each pixel is classified as 
belonging to a defective or a normal area. An example 
of the segmentation result is shown in Fig. 13. The CNN 
is trained using a set of images that has been manually 
segmented to highlight the defected area with respect 
to the background. Image augmentation techniques 
have also been used to enrich the training set. The seg-
mentation technique has several advantages as it allows 
for the location, the size and the shape of the defect to 
be determined. The detected defect can successively be 
processed in order to be classified.

The designed solution is based on an Android appli-
cation that guides the operator through the acquisition 
and the evaluation of the images. As the operator moves 
in front of the bloom cross-section, the application 
creates a target on the portable device that should be 
filled with the bloom area relevant to the analysis. The 
portable device takes a picture of the area to be analyzed 
and sends it, through a Wi-Fi connection, to an external 
server where the AI service is running. Fig. 12 shows a 
simple scheme of the architecture.

The results of the defects detection and classification 
are stored in a database and sent back to the mobile 
device. The information provided by the detection and 
classification algorithms are: (i) the number of defects 
in the analyzed area, (ii) the dimensions of the defects, 
(iii) the distance from the center and (iv) the class of the 
defect. An example of a defect detection is reported in 
Fig. 13. The contour of every single defect is highlighted 
and the area is boxed (Fig. 13).

Conclusions

AI, thanks to breakthroughs in data availability and 
computing power, is nowadays shaping a technological 
transition that affects a wide range of applications, from 
everyday activities to business and industrial operations.

The key concept of AI, and especially ML, is that soft-
ware is able to extract knowledge from data. Machines 
can learn to perform tasks that humans can already do, 
but that were not doable by computers in the past. In this 
way, more parts of the production process can be auto-
mated. It is also possible to create or improve models 
that estimate or predict events by extracting information 
and patterns. ML is useful because such patterns are too 
complex to be easily detected by humans. 

These technologies have an immediate impact on 
steelmaking industry and can help reduce operational 
costs, improve product quality, increase efficiency and 
ultimately grow revenue.

However, the steelmaking industry presents some 
very specific requirements in terms of automation and 
information technology, which pose some technological 
challenges to the adoption of AI, limiting the spread of 
such technologies.

A framework has been developed to integrate ML 
deeply into the existing automation systems, making it 
easier for steelmakers to adopt these technologies into 
their existing processes.

This framework allows Danieli Automation to exploit 
all the technological breakthroughs that are enabling 
ML, such as the storage of data in data lakes or the 
usage of high-performance computing on the cloud, 
while keeping the data private and secure and the plants 
completely independent from external services during 
production.

This approach allowed for the development of sev-
eral applications of AI technologies for the steelmaking 
industry, some of which are presented in this paper. The 
presented solutions cover a wide range of problems in 
which ML can be applied, from advanced statistical mod-
eling for prediction of events during the next production 
steps, to on-line process control through the calculation 
of hard-to-measure properties, to machine vision tech-
niques to automate defects detection and classification.

All these technologies are already available and 
installed worldwide in plants that are pioneers in the 
realization of the intelligent plant.
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