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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Intelligent Steelmaking Based on Advanced Analytics:  
Reducing Operational Costs of a BOF

Modern manufacturing is charac-
terized by the availability of large 
sets of data (e.g., sensor data) of dif-
ferent formats, quality and seman-
tics, which is often referred to as 
big data.1 The abundance of data 
creates a vast potential for produc-
tion process improvement, as well as 
for increasing product quality and 
sustainability.2 The steel manufac-
turing industry is changing with the 
introduction of on-line data analy-
sis and the possibilities made avail-
able by cloud computing technology. 
Tenova understands that, in order 
to maintain a competitive role in the 
steel business, it needs advanced on-
line monitoring and analysis tools, 
developed on state-of-the-art detec-
tion algorithms and leveraging big 
data solutions. 

In this context, data min-
ing, data analytics and machine-
learning tools (ML) are becoming 
more and more important. They 
allow extracting knowledge from 
large amounts of data and find-
ing correlations among variables, 
which can be used to improve 
process control and decision- 
making strategies. Moreover, prob-
lems such as estimation of time-vari-
ant processes and strategy optimiza-
tion, typical of Information Theory, 
are part of this approach.

Machine-learning algorithms 
can be described as computation-
ally viable and robust methods to 
learn information directly from 
data without relying on a pre-
determined equation as a model.3 
ML algorithms come from a wide 
range of fields, including mathe-
matics, statistics, neuroscience and 
computer science. These techniques 
have become increasingly popular 
over the past decade and are used 
for multiple tasks such as classifica-
tion, estimation and regression in 

a variety of applications in com-
munications, process optimization, 
production, computer vision and 
many more.

Today, ML is used in various areas 
of intelligent manufacturing. For 
example, learning algorithms are 
utilized for fault detection in semi-
conductor manufacturing,4 estima-
tion of the manufacturing cost of 
civil jet engines5 and for energy 
optimization in marine transporta-
tion.6 It has been shown that ML 
techniques have a strong ability to 
handle large, multi-variate data in 
complex, dynamic and often chaot-
ic environments, while providing a 
good trade-off between complexity 
of solutions and resulting precision.2 

In the specific case of the steel-
making industry, the trend toward 
digital innovation is accelerating 
across the sector because companies 
are much more focused on cost and 
driving operational efficiencies in 
an era of relatively low steel prices. 
Tenova believes that new digital ser-
vices can have a substantial impact 
in delivering smarter and more effi-
cient operational solutions. 

In this contribution, Tenova pro-
poses some examples of pilot proj-
ects that leverage ML techniques 
and new possibilities achievable 
with new digital tools. Specifically, 
control models need to be based on 
a sound physical understanding of 
the process but should also account 
for many uncertainties due to the 
nature and complexity of the envi-
ronment in which the process is car-
ried out. As a result, it is crucial to 
extract useful control information 
from the raw data stream acquired 
by industrial sensors. To achieve this 
objective, Tenova is relying on the 
promising approaches offered by 
ML and advanced analytics.
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In terms of model optimization, Tenova presents 
the improvements obtained for steel temperature pre-
diction in the proprietary BOF Static Charge Model. 
The analysis was carried out on real operational 
data collected during 2018 in a basic oxygen furnace 
(BOF) shop in North America. The application of 
advanced analytics and ML allowed for the identifica-
tion and resolution of specific cases in which the steel 
temperature prediction was particularly inaccurate. A 
correction model was developed on the acquired data 
and allowed for a significant improvement in the accu-
racy of predicting the final steel temperature. The 
obtained results would benefit the client with a lower 
number of reblows expected. 

Furthermore, digital transformation will help not 
only in terms of continuous improvement of process 
models, but also with their performance consistency 
over time by introducing a data infrastructure that 
allows data accessibility (ubiquitous access, which is 
a concept well developed in communication and net-
working), automated advanced monitoring of perfor-
mance (both for equipment and process models), and 
multi-plant integration. 

Tenova is not alone in this endeavor. Together with 
Microsoft, a joint program was launched in 2017 with 
the aim of developing an integrated industrial system 
to allow a secure and scalable analysis of data gathered 
in the field through a variety of sensors. This complex 
architecture is enabled through the Microsoft Azure 
cloud platform, which offers a trusted and reliable 
service for data collection, storage and analysis. 

Advanced Analytics: Model 
Optimization and Continuous 
Improvement

Data Architecture — To pro-
cess the significant quantity 
of data gathered from plants, 
Tenova defined a data science 
architecture that accounts for 
both cloud solutions and on- 
premise scenarios, including 
hybrid solutions combining the 
two.

The different options are tai-
lored to customer constraints 
and needs.

Cloud Architecture: This solu-
tion is characterized by a high 
degree of flexibility. In this 
context, the training of ML 
models can take full advan-
tage of cloud resources, scal-
ing as needed, and through 

the retraining service, the model parameters can 
be continuously updated. Furthermore, whenever 
a newer model for the task has been trained, it can 
be deployed right away on the cloud. This solution 
facilitates integration with other services such as 
3D manuals and Tenova’s Internet of Things (IoT) 
platform. The major limitation of this architecture is 
that response times are not fast enough for real-time 
applications; therefore, the models deployed on the 
cloud can be used to feed data to dashboards, provid-
ing useful information to users, but not to control the 
equipment automatically when low latency is required.

On-Premise Architecture: The main advantage of the 
on-premise solution is the possibility of automatically 
controlling the equipment with virtually zero latency. 
Such architecture is also appropriate for customers 
who are not ready to trust a cloud-based solution 
and prefer to host their data in their own plants. In 
this case, though, retraining and improvement of the 
models is not applicable as the data is stored locally 
and is not easily accessible to Tenova’s data scientists.

Hybrid Architecture: Several hybrid solutions could be 
developed to leverage both on-premise and cloud 
where necessary. For instance, when the business 
case requires real-time predictions, the model can 
be deployed on-premise with the continuous retrain-
ing happening in the cloud. In such a scenario, the 
model retuned in the cloud is redeployed on-premise 
at regular intervals or upon request.

Workflow of Azure machine-learning services.

Figure 1
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Model Optimization: Applied Case 
for BOF Temperature Prediction — 
Tenova has developed its pro-
prietary Static Charge Model 
for BOF process. The model 
is a mass-energy balance that 
takes into consideration the 
conditions (composition and 
temperature) of the input 
material and calculates the 
amount of hot metal, scrap, 
additions, and oxygen needed 
to reach a desired steel compo-
sition, weight and temperature 
at the end of the blow. Thanks 
to a new mathematical formu-
lation, the Tenova model offers 
freedom in defining opera-
tional parameters such as the 
optimal basicity ratio, the maximum hot metal ratio, 
the heat size and the iron oxides in the slag. 

The accuracy of the Static Charge Model is fun-
damental and is at the core of the BOF production: 
errors in the mass-energy balance will result in sub-
optimal use of charged material and lower efficiency 
in the downstream steel processes, both in terms of 
energy consumption and time delays. It is particularly 
important to predict the final temperature of the steel 
bath: the prediction accuracy affects decisions related 
to material additions (fuel/cooling) to reach the tar-
get steel temperature at the end of blow. Moreover, a 
good final temperature limits the number of reblow 
operations that directly affect the heat yield (the ratio 
between steel weight/total input iron) and the energy 
consumption of the downstream ladle stations. 

One key observation is that whereas the Static 
Charge Model is based on the physics of the process 
and the mathematical formulas to model it, in reality 
there are other elements that are not included in the 
formulas and that affect the outcome. For instance, 
the furnace heat losses are the results of very complex 
and often unmeasurable variables. While not directly 
measurable, the effect of those variables is noticeable 
in the collected data used for training the machine-
learning models.

The final goal of the presented data science project 
was to generate a more accurate prediction of the 
final steel temperature, reducing the error of the ini-
tial calculation of the Static Charge Model in order to 
increase the value for the customer. 

The available data for this project was recorded 
by the programmable logic controller (PLC) and 
sensors in the plant, and include more than 100 
variables. The quality of the input data is essential; 
therefore, data exploration and data cleaning (i.e., 
outliers removal) was performed. The model develop-
ment phase involved the understanding of how the 

different data relate to each other, by both statistical 
means (e.g., correlation analysis) and the knowledge 
of the physics of the process. After this step, the data 
set had roughly 4,300 heat observations and 17 vari-
ables to be used for the prediction (16 variables to be 
used for the prediction plus the target variable). 

First, data were randomly split into training and 
testing sets while trying different simulations and 
then, taking into consideration the temporal aspect of 
the processes, a period of data was used as the train-
ing set and a different period as the test set. Multiple 
ML models were tested, including linear regression, 
polynomial regression, support vector regression, ran-
dom forests, extreme gradient boost and neural net-
works, in order to find the best correction model. 

The model was tested on 400 consecutive heats in 
real operating conditions, which include all the uncer-
tainties of the real BOF process. The results were 
compared with the performance of the deterministic 
model relying on mass-energy equations. All the 
ML models performed better than the deterministic 
model. The best trade-off between accuracy and com-
plexity was reached with the support vector regression 
(SVR) model. Further improvements of the models 
require a greater amount of observation and fine-
tuning of the model hyper parameters. 

The SVR model error is defined as the absolute 
value of the difference between the predicted tem-
perature and the real one. Several metrics are used to 
monitor the quality of the models:

	 •	Median absolute error (MAE): Rare and 
extreme errors do not influence this metric.

	 •	Root mean squared error (RMSE): Extreme 
errors influence this metric more heavily.

	 •	Error range (color): The predictions are labeled 
with respect to the absolute error (to the real 
value) in the following way:

Interface of Tenova’s Static Charge Model for the basic oxygen furnace (BOF).

Figure 2
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 – Blue: Less than 25°F of error.
 – Orange: Between 25°F and 50°F of error.
 – Red: More than 50°F of error.

The metric by color is used because, due to the 
nature of the problem, it is important to have as low 
errors as possible (under 25°F) and to keep extreme 
errors under control (above 50°F).

Table 1 summarizes how the ML model (SVR) is 
able to perform better than the deterministic model. 
The MAE index decreases from 
25°F to 19°F (24% reduction). 
More importantly, the distri-
bution of the temperature 
error is significantly improved: 
blue points (number of heats 
with temperature error <25°F) 
increase from 49% to 61% and 
red points (number of heats 
with error >50°F) decrease 
from 19% to 10%. Those 
results are visualized in Fig. 3 
in the form of a scatter plot of 
the predictions vs. real values. 

If the model were to be always 
accurate, the points would be 
exactly on the black line. The 
different colors reflect the 
absolute error between the 
real value and the prediction, 
as outlined in the metrics by 
color. The fact that the cloud 
of points is much more tightly 
distributed around the black 
line for the SVR rather than 
the deterministic model con-
firms that the former is consis-
tently more accurate than the 
latter.

Fig. 4 presents a graphical 
comparison of the tempera-
ture error of the two models on 
a heat-by-heat basis for the sub-
set of 400 heats that compose 
the test set. It is evident how 
the error of the SVR (blue line) 
shows a more limited variance 
than the deterministic model 
(green line): SVR temperature 
prediction error is much more 
compact on the lower values 
and does not suffer from the 
few extreme error peaks that 
affect the deterministic model. 

In conclusion, from the data 
collected during a few months 
of operation, it was possible 

Table 1
Comparison Summary Between Support Vector Regression 
(SVR) Model and Deterministic Model

SVR Deterministic

MAE (°F) 19.314  25.600

RMSE (°F) 30.626 45.530

Blue (% heats) 61.500 49.400

Orange (% heats) 27.700 30.800

Red (% heats) 10.800 19.800

Temperature error over 400 consecutive heats: SVR model (blue) and deterministic 
model (green).

Figure 4

Scatter plot of temperature prediction: SVR model (a) and deterministic model (b).

Figure 3

(a)

(b)
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to develop a model to correct and increase the accu-
racy of steel temperature prediction of the BOF Static 
Charge Model, thanks to ML methods. Simulated 
results on real heat data showed that the number 
of heats that exhibit a final steel temperature error 
greater than 50°F is drastically reduced, which would 
translate to an important reduction of reblow opera-
tions and, consequently, would result in both higher 
yield (reduced iron oxidation) and important energy 
savings in the downstream ladle furnace stations.

Model Monitoring and Continuous Improvement — 
Continuous improvement and monitoring of model 
performance is one key advantage of cloud data infra-
structure, which offers new ways of delivering and 
making accessible essential information about model 
performance in real time. Raw data are processed and 
transformed in the most useful summary information 
to characterize a process status or classify an anoma-
lous behavior. Meaningful information can then be 
accessed or delivered to multiple clients in an autono-
mous way, in order to have the best possible “status” of 
the equipment or model performance at the current 
moment, or alternatively in a recent time period. In 
this way, performance of process models can be easily 
tracked and maintained consistent in time by retun-
ing operations when necessary. 

The process model can be considered a “digital 
twin” of the real process, where the model is capable 
of simulating and describing the process evolution in 
time according to specific key performance indica-
tors (KPIs) and within certain operational boundar-
ies. This example refers to Tenova’s model for carbon 
prediction in an argon oxygen decarburization (AOD) 
plant. This model estimates the carbon content at the 
process turndown based on input information at the 
start of the heat and continuous information (i.e., off-
gas and oxygen consumption) during the decarburi-
zation process. The metric of interest is the estimated 
carbon, which is compared to the measured carbon 
content obtained by physical measurement. The esti-
mation error is defined as the difference between the 
measured and the estimated values. Within a certain 
error threshold, the model is considered to be precise 
and reliable. From a process control point of view, it 
is significant to know how precise the model is now 
and how it has been in the recent heats to identify 
potential error trends. Moreover, it is important to 
know how well the operators are following the model 
(compliance indicator). 

The Model Control dashboard shown in Fig. 5 
displays those metrics in real time, summarizing the 
model performance. The dashboard is fully acces-
sible via a normal web browser on any device. Fig. 5, 
box A, shows the model accuracy during the last six 
heats (right) and its average value per day in the last 
6 days (left). The graph on the right of box A shows 

the accuracy threshold of the model: red points cor-
respond to an estimation error if above the accuracy 
threshold limit, green points if within the accuracy 
limit. A model with all green estimation is performing 
well, assigning a positive “trust score” to the model; on 
the other hand, a model with all red estimation would 
be unreliable with a trust score close to zero. The aver-
age score, normalized on the number of heats per day, 
is shown in the graph on the left in box A. 

Fig. 5, box B, shows the model score for the current 
day, which describes how good the model prediction 
is from 0 to 100% based on the estimation error in 
each heat of the last day. The lower indicator shows 
how much the operators are compliant to the model 
indication: higher values correspond to operators 
following the indications of the model about the stop-
blowing value. High score and high compliance mean 
the model accuracy is high; therefore, the model can 
be trusted. Low score and low compliance mean that 
it is not possible to evaluate the model reliability since 
the operators are not following the model indications, 
therefore deviating from known conditions. 

Finally, Fig. 5, box C, shows the dynamic tuning por-
tion, in which the estimation model parameters are 
tuned to the last available data to improve the model 
estimation. The updated model results are shown in 
the top graph (blue dots) to assess the improvements 
in the last six heats. The operator can choose at this 
point to update the model estimation parameters to 
increase the model accuracy or to keep the current 
one if model score is high enough. 

The Model Control dashboard represents an evolu-
tion of a normal human-machine interface (HMI) in 
terms of:

	 •	Accessibility: Being web-based, it is easily acces-
sible by almost any device, including tablets.

	 •	Visualization: Advanced analytics are per-
formed on the cloud allowing for the display of 
highly valuable information instead of raw data.

	 •	History: The virtually unlimited space on the 
cloud allows for the retrieval of large amounts 
of data to calculate significant trends at the 
most suitable time resolutions (hours, days, 
weeks...).

Technology Alignment 

The possibility of a technological alignment among 
different production sites certainly represents an 
important achievement in the context of operational 
efficiency. Tenova’s proposed solution relies on the 
cloud infrastructure to enable and simplify the shar-
ing and accessing of valuable process models from 
multiple locations. 

http://www.aist.org
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With this strategy, the benefits 
from updating and improving a 
single control model shared by 
all the production sites and pro-
cesses can be reaped immedi-
ately. In the example of the BOF 
Static Charge Model, the latest 
release of the “trim” algorithm 
with improved final tempera-
ture calculation will be immedi-
ately accessible by all the plants 
sharing the model. If a master 
model is available on the cloud, 
immediately all the users of the 
model would benefit from the 
updated version at once, instead 
of needing to update the instal-
lation at each production site. 

In addition, different plants 
would share a similar data for-
mat concerning the model use, which would allow for 
easier metric comparisons among locations as well as 
a better identification of the most significant variables 
impacting the process. 

Tenova describes the advantages of this solution in 
terms of “horizontal integration” among the different 
production sites. In this scenario, each improvement 
in a single plant can potentially be shared with mini-
mum effort to other production sites within the same 
company, generating a cross-learning system. 

The cloud infrastructure represents the basis on 
which an effective horizontal integration and align-
ment can be built, leaving to each client the possibility 
of taking advantage of the shared information or to 
remain more local, in a fully scalable solution accord-
ing to the client’s needs. 

The Strategic Partnership With 
Microsoft 

At the initial stages of the digi-
tal transformation in Tenova, it 
was realized that the breadth of 
the technological and cultural 
changes to put into effect would 
benefit from a strategic partner-
ship with a leading technology 
provider. After a broad inves-
tigation, Microsoft was select-
ed. At the beginning of 2017, a 
partnership with Microsoft was 
signed, involving strategic con-
sulting as well as the adoption 
of their leading cloud platform, 
cognitive services and mixed 
reality devices. For the past two 

years, Tenova has worked closely with Microsoft to 
develop its IoT infrastructure based on Microsoft 
Azure, implement a predictive maintenance solution 
and a data science pipeline to process incoming data 
from customer plants, develop ML models for opti-
mizing processes in customer plants, and redefine its 
customer service initiatives.

Microsoft Azure has become a cornerstone in 
Tenova’s digital offerings, as it is a well-established 
industrial cloud platform compliant with the strict-
est security and privacy regulations, such as the 
General Data Protection Regulation (GDPR). The 
Azure cloud provides state-of-the-art digital services 
as well as unlimited scalability on demand.

The work with Microsoft is led by Tenova’s digital 
team, a team of data scientists and software devel-
opers whose mission is to work closely with process 

Model Control dashboard for C level prediction in the argon oxygen decarburization 
process.

Figure 5

The cloud infrastructure will be pivotal to enable and simplify technology alignment 
among multiple plants.

Figure 6
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engineers and business developers within Tenova to 
identify, promote and facilitate a coordinated imple-
mentation of new services and business opportuni-
ties, as they are made available by emerging digital 
technologies.

Conclusions 

In steelmaking, process control models need to be 
based on a sound physical knowledge of the process 
but should also account for many uncertainties due 
to the nature and complexity of the environment in 
which the process is happening. In such a context, it 
is fundamental to transform raw data acquired in the 
plant into information useful from a process control, 
maintenance and safety point of view. Data analytics 
and machine-learning tools are at the core of the digi-
tal transformation and are becoming more and more 
important to improve process control and decision-
making strategies.

In this contribution, Tenova presented the results 
achieved in a pilot project aimed to optimize the 
steel temperature prediction of its BOF Static Charge 
Model. Based on a few months of operational data 
collected, machine-learning models were explored 
to obtain a more accurate temperature prediction, 
which would result in direct benefit to the client by 
reducing the number of reblow operations, therefore 
improving the process yield and reducing energy con-
sumption in the downstream stations. 

The optimization of process models is not the only 
possibility offered by digital transformation. Tenova 
recognizes other important advantages that could be 
unlocked by relying on cloud data infrastructure and 
advanced analytics, such as ubiquitous information 
accessibility, continuous process improvement and 
monitoring, and technology alignment to pursue hor-
izontal integration among different production sites. 

Tenova is fully involved in developing and imple-
menting the opportunities offered by digital transfor-
mation, whose benefits have already become notice-
able. The centralized digital platform developed by 
Tenova will provide more informative support, so as 
to offer a broad portfolio of services according to the 
company’s strategic objectives: offering process opti-
mization and plant monitoring for improved safety 
and lower environmental impact, as well as personal-
ized spare parts management and remote assistance 
to achieve a truly effective predictive maintenance. 

In this endeavor, the partnership with Microsoft is 
strategic in leveraging the Azure data infrastructure, 
which offers fully scalable and secure solutions to pro-
tect the client’s valuable data and make it accessible. 

The manufacturing plant of the future appears 
more and more as a place where competitive value 
is produced through the integration of the enabling 
technologies of Industry 4.0 into the workplace. For 
the metals industry, ubiquitous information acces-
sibility granted by connectivity and data sharing will 
play a significant role in facing the challenges posed 
by fluctuating markets and the potentially hazardous 
working environment. As operators explore new ways 
of working, Tenova is willing to design and embrace a 
digital strategy that represents the most effective solu-
tion for its clients. 
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