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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Driving Business Value in Industry 4.0: Big Data and  
Analytics for Steel Process Improvement

World steel producers face new chal-
lenges every day due to the need 
to be competitive in their markets 
as well as to produce high-quality 
products to meet the expectations 
of their most demanding customers.

This situation implies two things:

1.  Processes must be well adjust-
ed to maintain product prop-
erties within the most strin-
gent tolerances and reduce 
the dispersion range.

2.  It is critical to minimize oper-
ational risks that could gen-
erate machine downtimes, 
impacting the overall equip-
ment effectiveness (OEE) of 
the processes.

For both challenges, the combi-
nation of technologies and disci-
plines such as big data and machine 
learning makes it possible to have 
powerful platforms for prediction, 
exploratory analysis and descriptive 
analytics, in order to provide:

 • Virtual sensors: Predictors for 
spots where it would be diffi-
cult or impossible to measure 
physically.

 • Process optimization in terms 
of productivity, equipment 
efficiency and production 
costs.

 • Detection of operational risks 
that could lead to unplanned 
machine downtimes.

 • Prediction of degradation of 
equipment performance.

 • Detection of risks that com-
promise the quality of the 
product.

 • Capture of expert knowledge 
that comes from the experi-
ence of experts who are close 
to retirement.

Quality and process problems can 
be approached from the perspective 
provided by data science, develop-
ing analytical models to make real-
time predictions that can be fed 
to the control systems or be used 
as decision support systems for the 
operation.

Part I — Motivation 

Objective — The objective of this 
work is to provide an introduction 
and present real cases of one of the 
disciplines of Industry 4.0 — big 
data and analytics — showing how 
data science can contribute to cre-
ating value and business benefits 
for the steel production companies, 
through the development of ana-
lytical models to explain and predict 
process behaviors.

The expected benefits of the 
development of these disciplines 
are:

Operative:

 • Reduction of the time in which 
the process lines operate below 
their maximum speed.

 • Improvement of efficiency by 
reducing machine downtime.

Quality enhancing:

 • Reduction of complaint rates.
 • Reduction of tons of retained 

product.
 • Reduction of reprocessing 

times.
 • Reduction of scrap.
 • Reduction of the time in which 

the process lines operate below 
their maximum speed.

 • Reduction of product storage 
time.

 • Improvement of delivery time.
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Mathematical Models in the Industry 

White-Box Models — The use of mathematical mod-
els in industrial environments is not new and has 
been widely used for different purposes; for example, 
models for the setup of complex and multi-variate 
machines such as cold rolling mills. Classic modeling 
is based on physical models of the process that can be 
parameterized and, in some cases, use optimization 
techniques to find optimal operating points. These 
models generally require few historical data, their 
maintenance is difficult and they are not easily adapt-
able to process changes.

Rule-Based Models — Another type of frequently used 
model is based on production rules, which has infer-
ence engines that allow the capture of expert knowl-
edge in each of the rules and functions. This enables 
the detection of specific process situations, which 
can trigger actions to interact with other systems or 
trigger alerts or alarms for the operators. In general, 
they are easier systems for analysts and processors to 
deal with, in order to configure the rules and actions 
of the scenarios that have to be captured, but they 
do not have the capacity to learn or to automatically 
modify the rules, generating a strong dependence on 
the process experts.

Machine Learning (So-Called Black-Box) Models — 
Machine learning is not a new discipline but together 
with the computing power of current systems and the 
ability to handle large volumes of data supported by 
big data technologies, it has emerged in recent years 
as an incredibly powerful tool. It is being widely used 
in complex applications, solving problems that would 
have been unthinkable before. This synergy opens the 
door to a new type of mathematical-statistical model: 
the so-called “data-driven model.” This new type of 
model is built using machine-learning algorithms that 
are “trained” with historical data. As a result, it is not 
necessary (although it is very valuable in practice) to 
know in detail the mathematical relationships of the 
underlying physics, which in many cases are virtually 
impossible to model, due to the countless variables 
involved and the complexity that they entail. The 
machine-learning algorithms can capture the struc-
tures of data relationships and learn in a sense that 
will be defined in the following section.

Machine-Learning Models 

Strictly speaking,1 a computer program has the abil-
ity to learn from experience E, in relation to a set of 
objective tasks T, by measuring performance P, if the 
performance at which tasks T are executed improves 
with experience E.

Example: a predictor of mechanical properties 
can learn from historical data (experience E) to 
execute task T to predict the variables’ yield strength, 
elongation and tensile strength by measuring the 
performance of prediction P as the percentage of 
the population of the test set for which the predic-
tion error is less than or equal to a certain limit. 
The experience E is called the “training set.” The data 
of the training set is organized in a data set, which is 
a tabular ordering of the data where each column is 
a variable that is part of the model and each row is an 
observation. The variables should be only those that 
have relevance for the variable to be predicted.

This means that the design of a system based on 
machine learning requires a series of design decisions 
that involve the following:

 • The choice of training set, which includes the 
choice of data set variables. Deciding which 
variables are part of the model and which are 
left out introduces a bias in the model.

 • The “target” function to be learned.
 • A representation of this target function.
 • An algorithm for learning the target function 

from the training set.
 • A measure of performance to evaluate the 

goodness of the prediction.

The learning process can be seen as the search in 
hypothesis spaces, in order to find the hypothesis that 
best fits the available training examples and other 
limitations or previous knowledge. Hypothesis spaces 
contain numerical functions, y = f(x,θ), with x being 
an input vector, x ∈ X. The challenge is to know 
the conditions under which these search methods 
converge toward an optimal hypothesis; for example, 
given an approximation function described in Fig. 1.

General scheme of the learning process.

Figure 1
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The idea is to find an approximation function f(x), 
which is fitted using historical empirical samples, 
denoted by: 

{(x, y)i} for i = 1, ..., n. 

Fitting f(x) implies minimizing a certain loss func-
tion, which reflects the expected number of mistakes 
made by f(x) in relation with y: 

′ ( )( ) = ( ) ≠∑L f
n

f x yi
i

i

1

(Eq. 1)

Typically, the squared loss can be a good measure of 
the fitting performance of f(x):

Squared loss = L(f(x), y) = (f(x) – y)2

The KDD Process (Knowledge Discovery From Data) — 
Briefly, KDD is the methodological framework to fol-
low to develop predictive or explanatory models and 
consists of the following stages:

 • Data Integration: Integration of the different 
data sources that will be part of the training, 
test and validation sets.

 • Data Selection: Selection of variables (columns) 
candidates to be part of the model and selec-
tion of observations (rows) that are candidates 
to be part of the data set.

 • Data Cleansing: Process of removal of noise in 
the data, detection of inconsistencies and solu-
tion of missing values.

 • Data Transformation: Data preparation in the 
way that machine-learning algorithms need it. 

 • Feature Engineering: The creation of new 
variables calculated from existing ones, or that 
result from aggregation processes such as aver-
age, counting, maximum, minimum, etc. A 
particular topic at this stage is the treatment of 
time series, which will also be discussed later.

 • Exploratory Analysis: This stage is about learn-
ing from the underlying relationships of the 
data; correlations, causality and limitations are 
explored, and the extracted knowledge is capi-
talized for its use in the next stage.

 • Model Development: Construction of several 
models with different machine learning algo-
rithms and selection of the best, after a process 
of model refinement.

 • Validation and Refinement in Production: 
Once implemented, the model can continue to 
be improved.

The entire process can be seen in Fig. 2.

Time Series Processing in Industrial Context 

Time series are the most frequently found data type 
in processes and manufacturing lines, because they 
are signals from sensors and instrumentation systems.

The big picture of data processing pipeline.

Figure 2
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In order for the time series to be processed properly, 
they must be put into context regarding the units that 
are being manufactured and that are supposed to 
have ensured and registered identity and traceability. 
For example, in the flat steel products industry, the 
manufactured unit is the roll or coil of sheet metal. 
When the coil goes through a process, for example a 
hot rolling mill, the time series have a beginning and 
an end given by the instants in time in which the coil 
goes through the process.

In the end, variables such as temperature, speed, 
rolling forces, etc., are pieces of time series for each 
coil; mathematically speaking, vectors of “n” samples, 
assuming a uniform temporal sampling.

To obtain the pieces of time series corresponding 
to each manufactured product (in this case, coils), it 
is necessary to integrate the traceability and track-
ing information that resides in the level 3 systems, as 
shown by Fig. 3. If variables coming from different 
production lines are to be integrated in the data set, 
traceability information is fundamental to filter the 
observations (coils) that followed a certain process 
path. The outline of this situation is shown in Fig. 4.

The question is how to incorporate variables that 
represent time series into a model. That is to say, if for 
the previous case, each observation (row) of the data 
set corresponds to a coil, each variable of the data 
set that represents a time series is a variable that is 
multi-valued, which means it is not a single value but a 
vector of samples. As it is not possible to treat the data 
in this way, it is necessary to submit the time series to 
a pre-processing called feature extraction, by means 
of mathematical operators whose input argument is a 
vector and results in a scalar.

There is a great variety of operators for the feature 
extraction, from the simplest ones (such as average, 
variance, maximum, minimum) to complex operators 
(such as fast Fourier transform, wavelets, etc.).2

These extracted features become variables of the 
data set, along with other process variables that are 
inherently single-valued. However, since time series 
are typically noisy and contain redundancies, it is nec-
essary to submit them to a filtering process to decide 
whether it will be included in the data set.

Therefore, the balance must be maintained between 
the extraction of significant but probably fragile 
features and robust but probably not significant fea-
tures. Some features such as the median will not be 
strongly influenced by outliers, while others such as 
the maximum value of the time series will be intrinsi-
cally fragile.

The Importance of Features for Statistical Anomaly 
Detection — An anomaly is a pattern that deviates 
from the expected or normal behavior. Therefore, 
anomaly detection looks at clues and compares attri-
butes to discover out-of-the-ordinary patterns. Many 
times, there are multiple anomalies in groups, not just 
single occurrences. 

Anomalies indicate some kind of disruption or 
abnormal operation of a machine or process. Again, 
analytics over the signals comes to help with this issue, 
through the development of models to detect anoma-
lies and generate warnings and alarms to the operator.

Anomaly detection splits into two parts: (1) develop-
ing the right features, and (2) feeding these features 
into a statistical and machine-learning model that 
detects anomalies in the features. If done correctly, 
the detected anomalies will have a high correlation 
with on-site disruptions and can be used to create 
alerts with a low false positive rate. It may seem like 
the complexity of such systems focuses on the statisti-
cal part. However, it is well known that feature selec-
tion is key in real-life applications.

Time series slices using traceability/tracking data.

Figure 3

Pre-processing of time series.

Figure 4
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Part II — Real Use Cases 

Mechanical Properties Prediction in a Hot Rolling Mill — In 
the steel industry, the mechanical properties of steel 
are the main differentiating features among different 
types of products. Properties such as tensile strength, 
yield strength and elongation of steel are essential 
parameters when deciding which material to work 
with in the construction industry or in the automotive 
industry. Additionally, these properties are also used 
to determine the parameters that are used in the steel 
manufacturing process itself.

Mechanical properties are usually measured in 
the physical testing laboratory, taking samples of the 
material at the end of the cold process. This proce-
dure, although reliable, has several disadvantages. 
First, the sample is usually obtained from one end 
of the coil, which is where the greatest variability of 
its indicators is found, due to issues inherent to the 
process. Second, the mechanical properties can vary 
along the coil, which is currently impossible to dis-
cern. Third, the delivery of laboratory results is not 
immediate, so many products are retained; this causes 
an increase in production times and costs.

A predictive model for estimating the mechanical 
properties of the coil at the exit of the rolling mill is 
therefore advantageous and desirable, since it allows 
operating downstream in the process and correcting 
deviations, thus preventing the material from being 
declassed.

Since the mechanical properties depend greatly 
on the type of steel, different models were developed 
for three classes divided according to the chemical 
composition:

 • Niobium steel (NB).
 • Carbon steel (C).
 • Vanadium steel (V).

For each type of steel, the tensile strength, yield 
strength and elongation were predicted, so there 
were nine models in all. The criteria to evaluate the 
suitability of the model were established as shown in 
Table 1, setting a tolerance range of deviation of the 
prediction from the real value and a minimum per-
centage of the predictions falling in that range for the 
model to be considered suitable.

The data set used for this case contained process 
data from a hot rolling mill (HRM) line, comprising 
a period of approximately 7 months of operation and 
including variables from the process (temperatures, 
strip speeds, reductions, etc.) and variables related to 
the chemical composition of the steel processed. Each 
observation (row) represented a coil that had been 
processed by the HRM and whose mechanical prop-
erties had been determined in the laboratory. The 
observations were divided into the three categories 

described earlier according to the chemical composi-
tion of the steel.

All data sets were subjected to a cleansing process: 
variables unrelated to the mechanical properties were 
identified and discarded, as well as variables with 
a high proportion of missing values; subsequently, 
observations with missing values were either removed 
or filled with an arbitrary value (e.g., column mean), 
depending on the nature of the variables. The distri-
butions of the variables in the resulting data set were 
examined to identify outlier values and it was deter-
mined whether they represented measurement errors, 
record errors or true values, and they were treated 
accordingly.

The data sets were divided into training subset and 
test subset. For each steel type, a machine-learning 
algorithm called Gradient Boosting Regressor4 was 
applied to predict each mechanical property. The 
algorithm was trained and cross-validated with the 
training subset, and then evaluated using the test 
subset. After tuning the parameters of the algorithm, 
the resulting scores of all the models surpassed the 
established thresholds (see Table 2). The distribu-
tions of the prediction errors for each model can be 
seen in Fig. 5.

Front-End Bending Prediction in a Reversing Hot Rolling 
Mill — During the hot rolling process, the thickness 
of the slab is reduced up to 99%. In the particular 
line where this project was carried out, most of this 
reduction is performed in a 4-high reversing rough-
ing mill. In the roughing mill, the steel slab coming 
from the furnace passes through a set of horizontal 

Table 1
Criteria for Model Suitability

Mechanical property
Tolerance  

range
Minimum 

percentage

Tensile strength ± 20 MPa 85%

Yield strength ± 20 MPa 75%

Elongation ± 3 % 75%

Table 2
Scores of the Models for Each Steel Type

Mechanical property

Score* per steel type

CMn Nb V

Elongation 83.66% 93.44% 87.50%

Yield strength 82.01% 81.36% 85.16%

Tensile strength 92.41% 87.66% 94.53%

* Percentage of predictions falling inside the tolerance ranges shown in 
Table 1.
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and vertical rollers in a reversible fashion, i.e., passes 
several times through the same set of rollers. During 
the passes of the slab in the reversing mill, there is 
sometimes a curvature defect in the tip of the sheet 
being processed, as can be seen in Fig. 6. This defect, 
due to the form it presents, is colloquially known as 
SKI or ski. Depending on its direction and magnitude 
(height), it can cause the slab to hit the frame of the 
next stage or to be inserted into the conveyor rollers, 
with its consequent damage to the equipment and 
production stoppage.

There are solutions in the literature that have 
addressed the problem of SKI through finite element 
modeling and simulation, such as References 6 and 7. 

According to their reports, the SKI height depends on 
mainly the temperature difference between the upper 
and lower face of the material, the speed difference 
between the rollers, the friction coefficients between 
the rollers and the sheet, as well as the difference in 
diameter between the rollers. 

For this particular project, the goal was to deter-
mine the process variables that influence the pres-
ence of the defect and to be able to determine which 
slabs are more susceptible to present SKI by predict-
ing the SKI height or front-end bending magnitude. 
The data set of raw process features consisted of vari-
ables from different stages of the process and product 
characteristics, mainly the heating furnace and the 

Distribution of errors in the predictions of mechanical properties.

Figure 5

http://www.aist.org
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reversing mill setup data. An infrared thermography 
system (IRT) provided the magnitude, direction and 
angle of the SKI, which were used as targets. The 
variable groups used for modeling were: slab thermal 
profile, rollers, reversing mill setup, threading roller 
speed and slab characteristics.

An exhaustive collection of data was done to mini-
mize the probability of having insufficient data or not 
completely describing the phenomenon. After the 
stage of data cleansing and variable engineering, it was 
found that the phenomenon could not be explained 
with only a small number of variables. Principal com-
ponent analysis was performed on the data, which 
showed that 95% of variance was explained by 21 
main components from a data set with 223 variables, 
of which 85 variables are calculated.

Erroneous observations (e.g., wrong dates arising 
from manual operation of the line) in the data set 
were removed prior to modeling. The data set was 
then randomly split into train and test subsets, in 
an 80:20 ratio, having 12,782 and 3,364 observa-
tions, respectively. The train observations were then 
checked for outliers, which were removed from the 
data. Collinearity was also investigated and the vari-
ables with the highest collinearity were transformed 
into ratios to enhance their differences and improve 
their predictive power. 

A meta-model of four individual models rendered 
the best performance in different tests. Such indi-
vidual models were: a deep neural network, an XGB 
model,4 a random forest model and an extra tree 
model. The predictions of the individual models were 
then averaged to get the final prediction. Modeling 
was made with the Python libraries sklearn3 and 

keras,5 while all data pre-processing was carried out 
in R.

The best model had an R2 of 0.75 on the test set, 
with 95% of the predictions having an absolute error 
below 20 cm and 61% having an error under 4 cm. 
The cumulative distribution function of the absolute 
errors is shown in Fig. 7. This model is currently 
being implemented, with the objective to predict 
possibly dangerous setup configurations that may 
lead to unsafe magnitudes of front-end bending. The 

Upwards front-end bending of the tip of a steel sheet during 
the fourth pass.

Figure 6

Distribution of the prediction error.

Figure 8

Scatter of the predicted ski values against the real values.

Figure 7
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prediction system will be fed with setup data and will 
raise an alarm if such an unsafe situation is detected. 
The distribution of the error is shown in Fig. 8, 
and the cumulative distribution function of absolute 
errors in Fig. 9.

Conclusions

As could be seen in the examples, the use of industrial 
analytics to predict process behaviors is a fact, not just 
a theoretical formulation. If the required conditions 
to develop analytical models are met, that is, historic 
data availability, data quality, relevant process vari-
ables part of the process instrumentation, and the 

availability of experienced domain experts to work 
in a multi-disciplinary team with data scientists, it 
is possible to create value through analytics-based 
innovations.

It is not an easy path, but the potential business 
value to be generated implies a substantial return on 
investment and could enable organizations to develop 
new differentiating strategies in the steel market. 
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Did You Know?

Researchers Devise Way to Print Better Martensitic Steel Parts
Researchers from Texas A&M University and the U.S. Air Force Research Laboratory have developed an optimized process 

framework that allows for defect-free 3D printing of components from martensitic steels. 
“Strong and tough steels have tremendous applications but the strongest ones are usually expensive — the one exception being 

martensitic steels that are relatively inexpensive, costing less than a dollar per pound,” said Ibrahim Karaman, head of the univer-
sity’s Department of Materials Science and Engineering. “We have developed a framework so that 3D printing of these hard steels 
is possible into any desired geometry and the final object will be virtually defect-free.”

Their work appears in Acta Materialia.
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