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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Inclusion Classification by Computer Vision  
and Machine Learning

This paper describes the use of com-
puter vision and machine-learning 
methods to classify non-metallic 
inclusions in steel based on back-
scattered electron (BSE) scanning 
electron microscope (SEM) images 
obtained during automated inclu-
sion analysis. The use of automat-
ed inclusion analysis has produced 
major contributions to both con-
trol of inclusions during steel pro-
cessing and a mechanistic under-
standing of inclusion evolution.1–3 
Automated analysis utilizes an SEM 
equipped with a BSE detector and 
energy-dispersive x-ray spectroscopy 
(EDS). Thousands of features can 
be observed in times on the order 
of hours, yielding representations of 
the variable distributions. BSE imag-
es provide quantitative information 
on inclusion amount, size, shape 
and location, whereas EDS spec-
tra provide information on chemi-
cal composition. BSE images also 
contain information about inclu-
sion composition, since the pro-
duction of backscattered electrons 
increases with atomic number. The 
objective of this work was to create 
a system that relates BSE images 
to EDS composition measurements. 
This required conversion of the BSE 
images into a numerical representa-
tion so that they could be interpret-
ed by a computer.

When humans look at an image, 
we identify information based on 
the whole scene. The field of com-
puter vision deals with the extrac-
tion of useful features from images 
using mathematical and statistical 
models to describe visual informa-
tion such as edges, corners and 
blobs contained in images.4 These 
features then can be combined to 
make a numerical representation of 
the image. Another computer vision 
approach employs convolutional 

neural networks (CNN), which are 
a type of deep machine-learning 
algorithm that performs very well at 
image recognition tasks.5,6 A CNN 
passes the original image through 
multiple filter banks to create a 
multi-scale representation of the 
image in the form of a high-dimen-
sional vector. The system then uses 
a classifier that identifies the prob-
ability that an image belongs to a 
given class. Both the filters and the 
classifier are learned from the train-
ing data. Once trained, the model 
can be used to classify additional 
images. An advantage of the CNN 
approach is that it does not require 
a human to identify the types of 
features to be considered; instead it 
learns them from the data.

CNNs are a type of machine-learn-
ing algorithm. Machine-learning 
methods attempt to automate data 
analysis or make predictions from 
data without intervention from a 
human. There are two general class-
es of machine-learning methods: 
supervised and unsupervised. The 
primary difference between them 
is whether a human assigns labels 
to the data. For supervised learn-
ing, the data are labeled with the 
ground truth (e.g., for a photo, the 
ground truth label might be “cat” 
or “dog”). Functions are built to 
map the relation between the data 
and the ground truth. Classification 
and regression are two common 
examples of supervised machine 
learning. Unsupervised learning 
methods draw inferences from data 
sets that do not contain labels. The 
most common unsupervised learn-
ing method is cluster analysis, which 
is used for exploratory data analysis 
to find hidden patterns or group-
ings in data.

In this work, a CNN was employed 
to recognize image features, develop 
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numerical representations of these features and then 
use these representations for classification. A set of 
automated inclusion analysis data was used for:

 • Training — Images and their classifications are 
used as inputs. The CNN algorithms optimize 
the model parameters so that model predic-
tions match the ground truth classifications.

 • Validation — A subset of training data used as a 
check of parameter optimization, as well as for 
manual parameter adjustment.

 • Testing — A set of images (distinct from those 
used for training and validation) is classified by 
the CNN and the classifications are compared 
to the ground truth.

This procedure is an example of supervised machine 
learning. In this work, observations were either classi-
fied as “inclusion” or “not inclusion,” i.e., a binary clas-
sifier was constructed. In the future, additional classes 
could be added so that better relationships between 
inclusion BSE image and chemical composition could 
be constructed. This approach could reduce the need 
for EDS analysis during automated inclusion analysis.

Materials and Methods 

Sample and Automated Inclusion Analysis Details — 
Automated inclusion analysis data was provided from 
four samples. Data was collected from the Automated 
Steel Cleanliness Analysis Tool (ASCAT) system. Each 
sample was taken from different heats of plate prod-
uct. Both BSE images (128 x 128 resolution) and EDS 

data were provided. A total of 49,372 observations 
were made for the four samples. From this data set, 
15,924 observations classified as “inclusion” and 3,128 
observations classified as “not inclusion” by internal 
ASCAT rules were selected. The remaining observa-
tions were also classified as “not inclusion” by the 
rules but were not selected for this analysis because 
they consisted of blank fields of view or very small par-
ticles with low EDS counts. The ASCAT classifications 
were taken to be the ground truth for the computer 
vision analysis. 

Computer Vision Methods — The data set was first 
balanced, i.e., made to contain equal numbers of 

“inclusion” and “not inclusion” observations. This was 
performed by randomly sampling 3,128 observations 
from the “inclusion” class. The total data set size was 
therefore 6,256 images. From this data set, 4,003 
observations were used to train the model, 1,001 
observations were used to validate the model during 
training, and 1,252 observations were used to test the 
model after training was completed. 

In this work, a publicly available CNN, VGG16, was 
used. This CNN has been developed for image clas-
sification tasks on a wide variety of images. The initial 
model parameters were taken for the VGG16 CNN 
pre-trained on the ImageNet database. ImageNet is 
a database of more than 1 million natural images 
of various everyday objects (but no micrographs). 
Despite having little relation to inclusions, features 
generated from the transfer learning process repre-
sent high-level conceptual information that can be uti-
lized for problems well outside the scope of the origi-
nal training database.7,8 This is an example of transfer 

Ternary diagrams showing representative inclusion compositions for the four samples studied in this work. The axes are in 
mole fraction of Ca, Al, S or Ca, Mn, S. The symbol size is proportional to the number density of inclusions of a particular 
composition.

Figure 1
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learning, a method in machine learning whereby 
knowledge from one problem can be applied to a 
different problem. The rationale of transfer learning 
is that all objects actually share some characteristics. 
The characteristics learned from one database can 
be used to extract the features from another similar 
database even if some of images have never been seen 
by the model before. In this problem, the investigators 

wanted to see if the parameters or fea-
tures learned from a large number of 
natural images (ImageNet Data set) still 
apply to learned features from the inclu-
sion data.9,10 To do this, the VGG16 front 
end is applied, with parameters learned 
on the ImageNet database, but the classi-
fier is retrained. That is, instead of iden-
tifying images as belonging to one of the 
ImageNet classes (cat, airplane, etc.), the 
system classifies them as “inclusion” or 

“not inclusion.”

Results and Discussion 

Ternary diagrams representing the inclu-
sion compositions measured by EDS are 
given in Fig. 1 (shown for Sample 1 only, 
but inclusion compositions in other sam-
ples were very similar). Representative 
BSE images of observations classified by 
ASCAT rules as “inclusion” and “not inclu-
sion” are shown in Fig. 2.

The VGG16 classifier was trained for 
15 epochs (i.e., the number of times 
the training data is passed through the 
model and its parameters tuned). The 

accuracies, expressed as the percentage of correctly 
classified observations relative to the total number of 
observations, for the training and validation data dur-
ing the training process are shown in Fig. 3.

The results from the test data set are shown in the 
form of a confusion matrix in Fig. 4. In this represen-
tation on diagonal entries represent correct predic-
tions for the “inclusion” and “not inclusion” class. The 
overall accuracy of model predictions for the test data 
was 98%. 

The CNN training process required 280 seconds 
for 4,003 images (approximately ~70 ms per observa-
tion). The average time spent analyzing test images 
was 69 ms per image. Based on the analysis setup pro-
cedures, the EDS scans required 1,000 ms per feature. 

A previous study11 applied a similar CNN approach 
to a different inclusion data set that was collected on 
a different SEM. In that study accuracies were 72% 
for the test data. Fig. 5 shows representative images 
illustrating the differences between the two data sets. 
The higher-contrast images of the current data set 
appeared to improve accuracy of the CNN approach.

Conclusions 

This work showed that a computer vision approach 
could be used to predict whether an observation was 
an inclusion or not an inclusion with high accuracy. 

Accuracies of training and validation data during the VGG16 
model training process. The highest training accuracy 
obtained was approximately 96%. 

Figure 3
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Representative backscattered electron (BSE) scanning electron microscope 
(SEM) images of features classified as (a) inclusion and (b) “not inclusion” 
by the internal ASCAT rules. These images are examples of those that were 
used for the CV analysis.

Figure 2
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The prediction was made based on only BSE images. 
The next step in this work is to classify inclusions by 
chemical composition based only on BSE images. The 
influence of SEM setup parameters and the resulting 
BSE images was also shown to be important. Methods 
to accommodate variability in BSE images must be 
developed. However, with appropriate control of 
microscope setup and with sufficient data for model 
training, the CNN approach has the potential to aid 

filtering (i.e., identifying observations that are not 
inclusions before EDS measurement) and also to 
reduce the need for EDS measurements during auto-
mated inclusion analysis. 
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Figure 4

Representative BSE images from two automated inclusion analysis data sets, from [x], classified as “inclusion” (a), from [x], 
classified as “not inclusion” (b), from this work, classified as “inclusion” (c), and from this work, classified as “not inclusion” (d).

Figure 5
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