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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Smart Ladle: AI-Based Tool for Optimizing Caster Temperature

The development of the Smart 
Ladle focuses on taking data col-
lected from the ladle process and 
creating history-based predictions 
for ladle heat loss and tundish tem-
perature behavior, then providing 
these predictions to operators so 
that they can make process deci-
sions with better information. There 
are varying approaches to solving 
this issue, including the approach 
of this work. Operators can only 
react on information they know; 
the ladle metallurgy furnace (LMF) 
operator knows to expect additional 
heat loss in the first few heats of a 
ladle’s campaign, but they may not 
know about the long wait at the tap 
car that allowed a well-used ladle to 
cool. Data collection and presenta-
tion gives the operator more knowl-
edge to work with, but hidden cor-
relations still exist between the data. 

A key part of modern-day manu-
facturing across all sectors is the 
increased implementation of data 
collection systems and software utili-
ties that make use of the collected 
data. This is especially true for the 
steel industry, where the progress of 
smart manufacturing and Steel 4.0 
use modern technologies to reduce 
costs and improve product quality.1 
One such technology is machine 
learning and, more recently, deep 
learning.2,3 

Data usage may be as simple as 
“gather and display,” giving opera-
tors and technicians access to data 
feeds that help inform operations 
and design. Collected data can be 
further used with control systems 
to improve automation and safety, 
using data feeds to augment process 
rates or initiate emergency proce-
dures and alarms. Where these two 
concepts meet sits deep learning: 
the use of data history, real-time 
feeds and “fuzzy logic” algorithms 

to create correlations in the data 
feed that allow for process optimiza-
tion and prediction. 

Advancements such as these allow 
for greater consistency and higher 
production quality, ensuring that 
operators have the information they 
need to apply expertise while filling 
in knowledge gaps with algorithm-
based decision-making. In the con-
tinuous casting process, operator 
expertise plays a key role in balanc-
ing casting parameters using the 
knowledge of current process con-
ditions. Casting too slowly with low 
temperatures runs the risk of clog-
ging; casting too quickly or with 
high temperatures may result in a 
breakout. 

Ladle Process — Referring to the 
“ladle process” may not be specific 
enough given the wide variety of 
logistical and procedural differ-
ences among steel manufacturers. 
For the initial stages of this work, 
the ladle process at Steel Dynamics 
Inc. (SDI) – Flat Roll Group Butler 
Division was used for testing and 
development. The ladle history data 
mentioned above is gathered from 
the following stations (roughly in 
order):

	 •	Ladle pre-heating.
	 •	Electric arc furnace (EAF).
	 •	Ladle metallurgy furnace.
	 •	Casting.
	 •	Ladle maintenance stations.

Some ladle processes have alter-
nate stages than those listed (such 
as a basic oxygen furnace in place of 
the EAF or ladle treatment stations 
instead of an LMF), and others have 
additional stations such as vacuum 
degassing. The final outcome of this 
work is to create a universal system 
that can handle these differences 
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while still providing predictions of the ladle thermal 
behavior. To this end, the machine-learning efforts 
must be organized in such a way as to understand the 
incoming data semantically (with respect to the data’s 
purpose).

For this work, the different stages of the ladle’s 
process are categorized by the “type” of time. These 
are separated into pre-heat time, wait time, residence 
time and maintenance time. The wait time and main-
tenance time are considered “empty” time, where the 
ladle has no steel and therefore will rapidly lose heat 
to the environment. However, there is a difference 
between a long maintenance time prior to pre-heat 
followed by a short wait time at the furnace and the 
reverse scenario. Therefore, these two empty times 
are treated separately from each other. Fig. 1 shows 
a diagram of a ladle’s process and the different divi-
sions of time.

Machine Learning — Machine learning is a field of 
computer science that revolves around the use of algo-
rithms with overlapping (or fuzzy) behavior rather 
than the discrete behavior found in most computer 
mathematics. Machine learning through methods 
such as neural networks creates those semantic cor-
relations between the data input, finding connections 
that may not otherwise be apparent. For example, 
there is an intuitive connection between heat loss in 

the walls of a ladle and the time that a ladle spends 
empty. 

Engineers and technicians can take samples of 
ladle temperature to observe such a heat loss, and 
they may also take time samples to correlate this heat 
loss with time. This, however, requires the engineer 
to be aware of this correlation beforehand to manu-
ally make those connections. Machine learning takes 
broad swaths of data and examines each input relative 
to the desired outputs. The end result: correlating 
weights that describe the influence of each input on 
those outputs. These weights may be very small as to 
denote no correlation, or they may be comparatively 
large and indicate a strong direct connection (as in 
the time versus heat loss example).

The use of machine learning requires proper “prun-
ing” of the data to create a data structure: a prop-
erly formatted input/output model for the machine- 
learning algorithm. The algorithm itself can vary 
greatly. Some algorithms may be more applicable 
to short-term data feeds where most relevant data is 
immediately available. Others function in a way that 
allows the algorithm to “remember” important data 
over a long history. Selection of an algorithm is as 
important as the creation of the data structure.

Once the algorithm has been prepared and the 
data put into the desired structure, the algorithm can 
be “trained” on the data. For machine learning, the 
more data that can be provided the neural network, 

Ladle process diagram with different time categories.

Figure 1
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the better the network can learn. Longer data his-
tory ensures more chances for the data to include 
non-standard situations. If the neural network is only 
provided normal data, it will be unable to recognize 
and make prediction from abnormal inputs. 

Approach 

This work uses several assumptions and specific 
approaches to correlate the available input data to the 
desired outputs. Assessments and studies on the heat 
loss in ladle systems have been done to identify the 
major factors that influence heat losses and the corre-
lations with tundish temperatures. Recommendations 
from industry partners and literature4,5 resulted in 
a list of “critical parameters”: factors of the refining 
ladle/casting process that will influence the thermal 
behavior of the ladle and are captured by the data 
available. These parameters are:

	 •	Ladle history: Data collected on a per-ladle 
basis using the previous three heats of the ladle.

	 •	Ladle empty time: The time that the ladle has 
spent empty of steel, specifically between the 
end of casting and the start of pre-heating.

	 •	Ladle pre-heat time: Time spent on the pre-
heating unit.

	 •	Ladle steel time: Time the ladle spends with 
liquid steel contact.

	 •	Ladle gap time: Time between the end of pre-
heating and tapping of steel into the ladle.

	 •	No. of heats in the campaign: The number 
of heat cycles the ladle has experienced since 
being relined. The first few heats of a new cam-
paign will have different thermal behavior than 
a well-used ladle.

	 •	No. of heats in the sequence: The tundish itself 
is relined periodically, with the first heat of a 
new tundish having very different behavior.

	 •	LMF temperature sample: Ladle steel tempera-
ture value manually sampled at the LMF.

	 •	Casting throughput: Casting speed neces-
sary for predicting time to open and making 
assumptions on the future heat’s performance.

	 •	Tundish steel temperature: Temperature sam-
ples of the steel temperature in the tundish.

As mentioned earlier, some of the listed data is 
chosen because it is available. Previous studies in this 
field have found additional factors that will influence 
the heat loss in the ladle that are not currently avail-
able for usage, including ladle wall thickness/erosion, 
ladle wall temperature values and the usage of ladle 
lids.5,6 The model as developed can be modified to 
include such information if/when that information 
is available. Development of the software was done 

using Python 3.8 with the numpy, scipy, pytorch and 
pandas libraries. For the training phase, a Linux 
machine with GeForce GTX 950M GPU was used. For 
simulating the SQL database calls that would occur in 
the production environment Microsoft SQL database, 
a similar MySQL database was built on the Linux 
machine using XAMPP. After the installation of the 
ODBC driver and MySQL ODBC connector, commu-
nication was established between the MySQL database 
and Python program with the pyodbc library.

The goal of the model is to make three predictions:

	 •	The ladle steel temperature drop between the 
last temperature measurement at the LMF and 
the time at which the ladle opens at the caster.

	 •	The tundish steel temperature at the midpoint 
of a heat.

	 •	The slope of the tundish temperature profile 
after the linear region created by intermixing.

Providing these three predictions, in addition to 
providing the operator with quantitative and qualita-
tive information about a ladle’s history, will help oper-
ators with the decision-making process with regard to 
ladle steel temperature.

Methodology 

Input Data — SDI provided the input data for the 
model development. The collected data features 
mixed sample rates, with most of the data being event-
triggered or manually triggered and others collected 
at fixed periods. The industry data is shown in Table 1.

The development of the model used off-line copies 
of the database, with roughly 8 months of data (over 
12,000 heats) exported into a comma-separated for-
mat. After testing and training using the static data 
was completed, the code was modified to access an 
SQL database directly to read the necessary process 
data. This was tested by converting the exported data 
into a local SQL database that mirrored the database 
of SDI and could be accessed for testing the database 
calls and local data analysis.

The pyodbc library was used to connect a Microsoft 
SQL database with the Python program. After pulling 
data from the necessary tables, the input parameters 
can be parsed and the data structure prepared. For 
example, the remaining weight in an open ladle and 
the current throughput at that caster are used to cal-
culate the expected time that the next ladle will be 
needed at that caster. This process checks for certain 
conditions that would prevent proper prediction. For 
example, when the specified ladle is not in the LMF 
process, or it does not yet have a temperate sample 
recorded, the Python program would exit with com-
ment. The software will also return an error if the 
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heat currently being casted has not been casting for 
long enough (generally at least half-complete).

Data Structure — The exported data must be parsed 
and formatted as inputs to the neural network. The 
resulting data structure includes 25 input factors: 
time intervals for ladle history, final LMF/tundish 
temperatures, casting throughput and current heat 
data. Before feeding the data to neural networks, 
industry data must be processed with normalization. 
For the purposes of training the algorithm, the data 
was filtered to exclude extreme “non-standard” heats. 
These included the first heat of a campaign, the first 
heat after downtimes/outages, and heats with values 
above/below certain extremes. This was to ensure 
that the resulting model would be trained using “stan-
dard” heats while additional methods for recognizing 
and processing non-standard heats were developed. 

Software Integration — As the Smart Ladle software 
will need to work with different systems at differ-
ent steel production facilities, development of the 
software included consideration for the differences 
in data security policies that may exist. Additionally, 
as the software was developed using Python, further 
consideration was given as to the issue of preventing 
version conflicts and library management. As such, 
the conda environment was chosen for the deploy-
ment of the Smart Ladle software at Steel Dynamics 
Inc. – Flat Roll Group Butler Division. Conda creates 
a sandboxed virtual environment for the Python dis-
tribution, and features a package management system 
that allows for easily installation of necessary Python 
libraries in addition to version management. As 
such, the only software that needs to be installed on 
the target machine is the microconda environment, 
after which a batch script can be run once to set up 
the necessary Python version and libraries. This pre-
vents the required Python installation for the Smart 
Ladle from interfering with/overwriting other Python 
installations.

To maintain this hands-off approach, the software 
is designed to interface with the Ignition system used 
by SDI for its human-machine interface (HMI) system. 

A script was created for Ignition that will pass the 
necessary information to a batch script (ladle num-
ber and target caster), then execute the Python code. 
The Python code will then read the SQL database in 
a read-only configuration, process the data and run 
the algorithm to generate the predictions. The output 
from this command is then read by the Ignition script 
as an array, allowing it to be incorporated into the 
SQL database or an HMI panel as needed.

Machine Learning Algorithms — The deep-learning 
program was developed to read inputs (process data) 
and provide outputs (ladle and tundish tempera-
ture predictions). The neural network architecture 
is demonstrated in Fig. 2. It consists of four blocks 
for demonstrating input data and the final linear 
fully connected layer. At each block, a linear layer 
was applied to extract features, followed by a one-
dimensional batch normalization layer and Sigmoid. 
The batch normalization layer7 is necessary to reduce 
internal covariate shift and maintain the distribution 
of the inputs of each layer to produce reliable neural 
networks. Sigmoid is used to introduce non-linearity 
to the neural networks. Next, the weights for each lin-
ear layer were initiated with Kaiming’s method8 due to 
the consideration of avoiding the vanishing gradient 
problem and exploding gradient problem. At the final 
layer, the fully connected layer was used to map 32 
component features to the last three outputs. 

Linear layer is expressed in:
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Table 1
Industry Data Used for Model Development

Data set Description Relevant Data

Electric arc furnace 
heats

Collated data on steel tapped into the ladle each heat Ladle number, heat number, tap temperature, tap weight, time stamps 

Ladle event Ladle repositioning data that is event-triggered Ladle number, ladle location, time stamps, heat number

Ladle metallurgy 
furnace event

Data from the LMF process, event-triggered
Ladle number, arcing events, stirring events, ladle steel temperature 

samples, time stamps

Caster process
Data on casting process and tundish, captured every 

5 seconds
Ladle number, caster number, heat number, tundish steel temperature, 

ladle steel weight, tundish level, casting speed
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Sigmoid is a simple non-linear function:
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Kaiming’s Initialization can stabilize the covariance 
of variable distribution:
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For the consideration of introducing non-linearity 
in neural networks, the activation function plays a 
critical role. The Adam algorithm9 was applied to 
reduce loss function, which is a robust and widely 
used algorithm to find the minimum. It accelerates 
the process of convergence compared to a traditional 
stochastic gradient descent (SGD) method. It updates 
the weights of the whole neural network after comput-
ing the gradient for a random sample: 

w w
m

:= −
+ ∈

η
ν

(Eq. 5)

For the loss function, Smooth L1 loss (Huber Loss) 
was chosen. Compared with the mean square error 
(MSE) loss function, it is less sensitive to significant 
errors that characterize MSE. Mainly, in some cases, 
it could prevent the exploding gradient problem to 
some extent.10 Hence, it avoids excessive sensitivity to 
significant errors that characterize MSE. 
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Table 2 shows a summary of the parameters for the 
developed machine-learning model.

Model Outputs — For the outputs of the neural net-
works, the target goals are the prediction of the 
temperature drop between the last LMF temperature 
sample and ladle open, to forecast the tundish tem-
perature at the midpoint of the casting process, and 
to predict the slope of temperature changes in the 
linear region after intermixing has occurred. The out-
puts of the software include an array containing the 
three aforementioned values, as well as history infor-
mation for the ladle’s current heat and the three prior 
heats. Finally, an additional set of values categorizes 
these values with respect to a “typical” heat, allowing 
the operator to see both qualitatively and quantita-
tively the history of the ladle.

The qualitative labeling is done by comparing the 
current value (e.g., “steel time”) and comparing it to 
the standard deviation for the collection of all “nor-
mal” heats in the data set. Then, labels are assigned 
based on the comparison in Table 4.

To evaluate the performance of our model, the root 
of mean square error (RMSE) and the mean absolute 
error (MAE) are considered the error performance 
measure. 

Architecture for Smart Ladle network.

Figure 2
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RMSE is computed as:
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(Eq. 8)

MAE is calculated as:
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(Eq. 9)

where

yi and ŷi = the actual value and predicted value, 
respectively, and

N = the number of items in the train-validate data set.

Results and Discussion 

The developed and trained model was used to make 
predictions on a partial selection of the overall data 
set, allowing the predictions to be compared to the 
known values from the data. Random heats would 
be picked and provided to the software as inputs in 
a way matching the production environment. The 
outputs would then be analyzed and compared to the 
known results from the data set. The resulting model 
shows good correlation with the known data, having 
an RMSE of 3.73°F for the midpoint temperature and 
3.42°F for the LMF temperature loss. The MAE was 
for both was found to be less than 3°F as well. The 
thermocouple accuracy for the data source is ±3°F, 
making the current prediction accuracy satisfactory.

While the RSME and MAE show good performance, 
large outliers still exist, as seen in the histogram 
plots of Fig. 4. While most cases performed within 
expected values, some heats show extreme errors of 
10°F or more. Some of the larger errors are attributed 
to heats with abnormal conditions (excessively large 
pre-heat or empty times, for example). The target 
accuracy for this software is to have few errors above 
5°F, meaning more work is needed on identifying and 
processing abnormal cases. Additionally, work is being 
done to include other factors that are currently not 
part of the data processing procedure. These include 
LMF events such as arcing, stirring and alloying. 

Conclusion 

A deep learning software was developed for the pur-
pose of providing ladle furnace operators predictions 
of ladle and tundish temperatures. The current work 

Table 2
Hyper-Parameter Values of the Proposed Model

Hyper-parameters Value

Learning method Adam

Loss function Smooth L1 loss (Huber loss)

Activation function Sigmoid

Linear layer initialization 
method

Kaiming’s method

Initial weight distribution Normal distribution

Batch size 6

Learning rate 0.005

Iteration number 10,000

Linear layer number 5

Linear layer channel
{25×128; 128×128; 128×64; 64×32; 

32×3}

Table 3
Output Array

Output value Description

Ladle data array
Heat #, ladle #, location, # heats in 

campaign, etc.

Midpoint temperature 
prediction

Numerical value [F]

Midpoint slope prediction Numerical value [F/s]

Heat loss (LMF to caster) Numerical value [F]

Ladle history array – Current 
heat (heat n)

Steel time, empty, time, wait time, 
pre-heat time

Ladle history arrays – Previous 
heats (heat n-1 to n-3)

As above

Ladle history values – 
Qualitative values

Qualitative labels for current heat and 
three previous

Comment
Comments on special scenarios or 

errors

Table 4
Qualitative Ladle History Value Labeling

Value comparison Label

< 1s Normal

< 1s value < 2s Low/high

> 2s Very low/very high

Table 5
Error Measurements on the Training-Validation Data Set

Measurement
Temperature at  
midpoint (°F)

LMF to tundish open 
temperature drop (°F)

MAE 2.89 2.61

RMSE 3.73 3.42
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focuses on providing information on the heat loss in 
the ladle between the LMF and the caster as well as 
information on the tundish temperature behavior for 
that future heat. The model was developed in Python 
using a set of heat data provided by Steel Dynamics 
Inc. – Flat Roll Group Butler Division. The devel-
oped model has a mean absolute error and RMSE 
close to the accuracy of the thermocouples used to 

take temperature measurements, though extreme 
outliers exist still. Further model robustness is being 
developed to include additional data as well as enable 
the model to handle data sets from other production 
facilities. Finally, work on implementation in LMF 
operator displays is underway to enable live testing of 
the model.

Plots of prediction values vs. the actual data.

Figure 3

Error histograms for ladle temperature drop prediction (a) and tundish midpoint temperature prediction (b).

Figure 4

(a)	 (b)
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∠ 一攀眀 琀漀甀挀栀 猀挀爀攀攀渀 挀漀渀昀椀最甀爀愀琀椀漀渀
∠ 䴀漀搀戀甀猀 挀漀洀洀甀渀椀挀愀琀椀漀渀 眀椀琀栀 倀䰀䌀猀
∠ 䈀氀甀攀琀漀漀琀栀 猀甀瀀攀爀瘀椀猀椀漀渀 愀渀搀 挀漀渀昀椀最甀爀愀琀椀漀渀
∠ 䘀漀甀爀 䐀椀最椀琀愀氀 伀甀琀瀀甀琀猀 漀瀀攀爀愀琀攀搀 瘀椀愀 倀䰀䌀
∠ 䘀甀氀氀礀 挀漀洀瀀愀琀椀戀氀攀 眀椀琀栀 漀氀搀 倀䰀吀 瘀攀爀猀椀漀渀猀

⸀⸀⸀愀渀搀 愀猀 愀氀眀愀礀猀Ⰰ 栀攀氀瀀椀渀最 礀漀甀 琀爀愀挀欀 
  礀漀甀爀 氀愀搀氀攀猀 愀渀搀 栀攀愀瘀礀 攀焀甀椀瀀洀攀渀琀   礀漀甀爀 氀愀搀氀攀猀 愀渀搀 栀攀愀瘀礀 攀焀甀椀瀀洀攀渀琀 
  琀栀爀漀甀最栀漀甀琀 琀栀攀 瀀氀愀渀琀⸀

∠ 一攀眀 琀漀甀挀栀 猀挀爀攀攀渀 挀漀渀昀椀最甀爀愀琀椀漀渀
∠ 䴀漀搀戀甀猀 挀漀洀洀甀渀椀挀愀琀椀漀渀 眀椀琀栀 倀䰀䌀猀
∠ 䈀氀甀攀琀漀漀琀栀 猀甀瀀攀爀瘀椀猀椀漀渀 愀渀搀 挀漀渀昀椀最甀爀愀琀椀漀渀
∠ 䘀漀甀爀 䐀椀最椀琀愀氀 伀甀琀瀀甀琀猀 漀瀀攀爀愀琀攀搀 瘀椀愀 倀䰀䌀
∠ 䘀甀氀氀礀 挀漀洀瀀愀琀椀戀氀攀 眀椀琀栀 漀氀搀 倀䰀吀 瘀攀爀猀椀漀渀猀

⸀⸀⸀愀渀搀 愀猀 愀氀眀愀礀猀Ⰰ 栀攀氀瀀椀渀最 礀漀甀 琀爀愀挀欀 
  礀漀甀爀 氀愀搀氀攀猀 愀渀搀 栀攀愀瘀礀 攀焀甀椀瀀洀攀渀琀   礀漀甀爀 氀愀搀氀攀猀 愀渀搀 栀攀愀瘀礀 攀焀甀椀瀀洀攀渀琀 
  琀栀爀漀甀最栀漀甀琀 琀栀攀 瀀氀愀渀琀⸀

䄀甀猀琀爀愀氀吀攀欀
㠀　　 伀氀搀 倀漀渀搀 刀漀愀搀 ⴀ 匀琀攀⸀ 㜀　㘀䬀
䈀爀椀搀最攀瘀椀氀氀攀Ⰰ 倀䄀Ⰰ ㄀㔀　㄀㜀
吀攀氀⸀ 㐀㄀㈀ⴀ㈀㔀㜀ⴀ㈀㌀㜀㜀
䘀愀砀 㐀㄀㈀ⴀ㈀㔀㜀ⴀ㈀㌀㠀㠀

㠀　　 伀氀搀 倀漀渀搀 刀漀愀搀 ⴀ 匀琀攀⸀ 㜀　㘀䬀
䈀爀椀搀最攀瘀椀氀氀攀Ⰰ 倀䄀Ⰰ ㄀㔀　㄀㜀
吀攀氀⸀ 㐀㄀㈀ⴀ㈀㔀㜀ⴀ㈀㌀㜀㜀
䘀愀砀 㐀㄀㈀ⴀ㈀㔀㜀ⴀ㈀㌀㠀㠀

眀眀眀⸀愀甀猀琀爀愀氀琀攀欀⸀挀漀洀
眀眀眀⸀猀琀攀攀氀琀爀愀挀欀椀渀最⸀挀漀洀
眀眀眀⸀愀甀猀琀爀愀氀琀攀欀⸀挀漀洀
眀眀眀⸀猀琀攀攀氀琀爀愀挀欀椀渀最⸀挀漀洀
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