
Digital technologies are 
transforming industry at all 

levels. Steel has the opportunity 
to lead all heavy industries as an 

early adopter of specific digital 
technologies to improve our 

sustainability and competitiveness. 
This column is part of AIST’s 

strategy to become the epicenter 
for steel’s digital transformation, by 

providing a variety of platforms to 
showcase and disseminate Industry 

4.0 knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.
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Systematic Application of AI to Quality Optimization  
From Steelmaking to Galvanizing

Since cost and quality optimization 
of individual processing steps in 
the manufacturing cycle of long 
and flat steel products has been 
an ongoing effort for decades, non- 
disruptive approaches for further 
optimizations are about to reach 
their technical limits. While appli-
cations of artificial intelligence (AI) 
and machine learning (ML) pushed 
the boundaries of those optimiza-
tions, their usually punctual appli-
cation to individual steps of the 
steelmaking process significantly 
hampers their potential. Even with 
these relatively new technologies, 
new ideas are required to reach 
new grounds in quality and cost 
improvements.

During the history of steelmaking, 
many cross-process optimizations 
were developed based on human 
expertise that was gathered over 
the decades. These optimizations 
are so omnipresent that they are 
easily overlooked, e.g., alloying con-
figurations govern the mechanical 
properties of the end product but 
also have great influence on defect 
rates during both casting and roll-
ing. Another example is that slabs 
are often sorted out after casting 
if it is expected (by experience) 
that the slab may have problematic 
inclusions that could lead to defects 
in the rolled or finished product. 
Various quality control systems con-
stantly assess produced material and 
decide — often via manual inspec-
tion by humans — if the material is 
suitable for the next processing step.

This aggregated knowledge of 
expert steelmakers is what leads 
to the high-end but still afford-
able steel products that are available 
today. To fully unlock the potential 
of artificial intelligence in steel man-
ufacturing, the AI approach must 
be lifted from punctual applications 

to the holistic level that is current-
ly only taken by the human steel 
experts. In fact, punctual applica-
tion of AI to individual processing 
steps could even counteract valu-
able achievements in an upstream or 
downstream process due to imposed 
requirements on input material or a 
single objective cost optimization at 
the expense of output quality.

Besides its major benefits in qual-
ity improvements and cost reduc-
tion, a systematic and integrated 
approach to artificial intelligence 
also enables other applications:

 • Addressing the need of trans-
parent CO2 and energy effi-
ciency tracking of steel pro-
ducers. Transparent tracking 
of material in combination 
with machine learning allows 
for the assignment of accu-
rate CO2 footprints to indi-
vidual material pieces and 
their processing steps. This 
can serve both as a selling 
point for the steelmaker as 
well as for identifying how to 
tune all production routes for 
CO2 energy efficiency. This is 
of particular importance dur-
ing the transformation pro-
cess from conventional blast 
furnace–based production to 
direct reduced iron (DRI)-
based production.

 • Predictive maintenance appli-
cations could be lifted from 
an individual process to a 
holistic level in parallel.

 • Productivity and cost efficien-
cy of the production site will 
improve significantly.

Establishing such an end-to-end 
optimization requires a systemat-
ic approach regarding data han-
dling, quality monitoring and plant 
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integration. Also, the transition needs to take place in 
parallel with the existing steel manufacturing systems 
and must not interfere with ongoing steel production. 
These and some other requirements addressed in the 
next section make such a transition challenging.

The article is structured as follows: First, the require-
ments of a fully integrated steel process optimization 
are described, starting with the finished end product 
(e.g., flat or long) going up the value chain from 
finishing to cold rolling to pickling to hot rolling to 
continuous casting to the meltshop.

Then, in a second loop through the value chain, 
problems and solutions addressing the requirements 
together with AI-based solutions for the relevant 
stages are presented. The feasibility of a fast approach 
to such a project has been demonstrated in collabora-
tion of Smart Steel Technologies GmbH (SST) with 
ArcelorMittal Eisenhüttenstadt1 and ArcelorMittal 
Duisburg,2 which will serve as example projects in 
the last sections of this article. First, a surface defect 
reduction on ultralow-carbon (ULC) interstitial-free 
(IF) flat products for automotive exposed material 
that was achieved via optimized casting parameters is 
discussed. Then, starting from the casting machine, 
the second example continues through secondary and 
primary metallurgy, covering all processes of steel-
making and liquid steel treatment. Both examples 
demonstrate that a fast adoption of the presented 
technologies does not interfere with the daily opera-
tion of production.

Requirements for Holistic Process Optimization 

What makes up a holistic or vertically integrated 
optimization approach? It means that any optimiza-
tion takes both direct and indirect upstream and 
downstream processes into account. For example, an 
optimization during casting should not only aim for 
lower slab downgrading, but also for a reduction of 
casting-related defects that only become apparent 
in the following hot or cold rolling and galvanizing 
steps. At the same time, optimized heats ordered 
from the meltshop must respect meltshop and cast-
ing constraints (such as casting speed or superheat 
constraints) and should consider heating cost and 
alloying configuration.

Implementing such an integrated and systematic 
approach in any steel mill is a very challenging proj-
ect and requires tight collaboration of metallurgy, 
steelmaking, data science, machine learning and 
IT experts. This cross-disciplinary expertise allows 
tackling key success requirements of such a project. 
The first fundamental one is a reliable and automatic 
detection, labeling, rating and quantification of qual-
ity deviations. The correct labeling and detection of 
defects is a necessity to compose training data for 

quality prediction models. The standardized rating 
(such as severeness) and quantification (e.g., defect 
area or deviation from target value) is required as a 
target signal for various ML and optimization models 
and is essential for measuring project success in the 
form of achieved defect reduction. These processes 
and their data handling should be standardized for 
different steel grades, time intervals, production set-
tings and across all production processes.

The other fundamental requirement is the con-
solidation of multiple data sources distributed over 
the plant and mapping between material pieces. To 
include the meltshop and continuous casting process 
in the optimizations, defects on a coil, billet, tube or 
other product must be mapped to their respective 
position on preceding milling stations up to their 
position on the strand. This allows for the defect to 
be related with the individual casting parameters that 
were used to cast this piece of strand (e.g., casting 
speed, cooling configuration) and information about 
the used heat (e.g., superheat temperature, chemical 
composition, degassing parameters). Here the inte-
gration of different level 1, level 2 and level 3 systems 
becomes relevant, as the processing parameters of 
the various processing steps must be tracked for each 
piece of produced material.

Built on this foundation, it is possible to create ML 
models for a current (upstream) process that compute 
the optimal process settings and optimal process 
operation in on-line, live mode to minimize process 
and quality deviations. The key is to avoid process 
and quality deviations before they occur. The same 
models are able to predict quality, but actively avoid-
ing deviations is the main driver to improve manufac-
turing processes. This applies to all processes of steel 
manufacturing.

Winning the Fight Against Slivers: ArcelorMittal 
Eisenhüttenstadt 

This section presents specific results for automotive 
exposed IF (ULC) steel grades that demand the 
highest standards of surface quality. The high qual-
ity requirements on automotive exposed ULC steel 
and the known casting behavior of these grades 
render these materials specifically susceptible to sur-
face quality defects such as slivers.3–8 Those defects 
often only become apparent after cold rolling and 
galvanizing, which makes them costly. With the 
approach described here, sliver rates at ArcelorMittal 
Eisenhüttenstadt were reduced by more than 50%.1

To achieve quick results, it makes sense to prioritize 
steel grades or end products that promise the larg-
est optimization potential. This reduces the initial 
complexity to integrate with and analyze the data of 
the various different systems in a plant. For example, 
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to improve the surface quality of automotive exposed 
steel, it suffices to fix surface inspection at the galva-
nizing line to obtain a valid target signal for optimiza-
tion and then use that to optimize the casting process. 
This prioritization leads to fast results with direct and 
substantial economic effect. A following extension of 
the integration and optimization to the remaining 
production lines and steel grades is then eased by the 
experience gathered during the first project phase.

Reliable Defect Classification — Flat steelmakers usually 
have installed automated surface inspection systems 
(ASIS) at the end of the hot strip mills, continuous 
pickling lines and continuous galvanizing lines. These 
systems take images of the top and bottom of the strip 
as it passes by. Whenever there is an irregularity in the 
texture of the steel surface, an image of that part of 
the strip is passed to an image classifier. The purpose 
of the classifier is to automatically determine if the 
irregularity is not relevant at all (so-called pseudo-
defects, water droplets, irrelevant shadows, etc.), or if 
the image contains a relevant defect; that is, scratches, 
scale defects, slivers, ungalvanized spots and more.

Currently, none of the existing ASIS provide defect 
classification robust and accurate enough to be used 
in automated process optimization. For example, all 
ASIS have problems distinguishing complex defect 
types such as slivers from completely different defect 
types like scratches. The reason for this is outdated 
classification algorithms. Therefore, state-of-the-art, 
image classification based on deep learning should be 
applied instead. Best results have been achieved with 
deep convolutional neural network (CNN) classifiers 
specifically designed for steel surface images taken at 
individual steel processing steps.

Deep CNNs that were specifically designed by 
Smart Steel Technologies for defect classification 
on the different types of steel processing lines form 
the core of the surface inspection component. These 
network topologies are then fine-tuned with plant-
specific training data and beat any other method in 
terms of labeling accuracy.9

Deploying the deep CNN-based defect classifiers 
on-site in the plant’s data center and using a graphics 

processing unit (GPU) accelerated inference ensures 
high throughput and low latency of the classification 
results, enabling live classification of defects where 
the delay is governed by the image data feed from 
the cameras and their associated software. As a side 
effect, defect image classification is standardized for 
the whole production site, regardless of the supplier 
of the camera hardware.

An extra level of labeling quality, i.e., even lower 
false positive and false negative rates, is achieved 
by cross-referencing potential defects to preceding 
manufacturing steps. This becomes possible by the 
uninterrupted tracking of material within the plant 
described in the following sections.

Cross-Process Data Transformation and Centralized Coil Maps — 
Using fully automated, position-based data matching, 
all defects and classification results from hot rolling, 
pickling and galvanizing are mapped into a joint 
coordinate system creating a precise digital twin of 
each slab/coil as it propagates through the plant. This 
transformation tracks any kind of manipulation per-
formed on the material, including uncoiling, upcoil-
ing, flipping, cutting, seam welding, cropping and 
trimming — even including inspection lines.

This becomes possible with the accurate integration 
of the plant’s level 2 and level 3 systems from which 
respective rotations, flips, crops, welds, etc., are rep-
licated during manufacturing. On top, the accuracy 
and robustness of position-based data matching is 
improved by ML models that are able to detect match-
ing errors automatically and — on the other hand 
— automatically cluster surface defect images from 
hot rolling, pickling, galvanizing that show the same 
defect at the same position of the strip. The resulting 
consolidated information can be examined using a 
modern, browser-based user interface (UI, Fig. 2). 
Here the production path of material as well as all 
classified defects, including the corresponding imag-
es and metadata, are displayed, allowing for quick 
quality improvements or degradation over individual 
processing steps. Corresponding defect reports can 
be generated automatically and directly downloaded 
for each coil as a PDF.

Deep convolutional networks translate images into a linearly separable space for classification.

Figure 1
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To facilitate day-to-day work with surface images, 
distribution of casting parameters and exploration of 
historic defect rates, Smart Steel Technologies installs 
additional web-based applications in the plant’s data 
center that can be accessed by authorized personnel 
from within the plant. These tools include a defect 
image search based on deep learning methods, a 
training set optimizer, and a training set projec-
tor and have been proven valuable since their first 
appearance in 2019.

Transparent Insight Into Quality-Relevant Process Conditions 
— With all defects mapped to their position on the 
cast strand, what remains is to automatically relate 
casting and meltshop data to the defects — this is 
done with so-called process analyzer tools. These 
tools aggregate defect data from hot rolling, pickling, 
galvanizing, and level 1, level 2 and level 3 data of the 
meltshop and continuous casting machine to strand 
segments (e.g., 50 cm), thereby building the necessary 
process context that relates achieved (surface) quality 
to (casting and meltshop) process parameters.

Clearly, the casting process of a particular 50 cm 
piece p1 of strand at time t1 may be influenced by 
events that happened earlier, at time t0, while the pre-
ceding piece p0 had been cast. Note that dependen-
cies also exist in the opposite direction. Casting con-
ditions of p1 can influence achieved quality results of 
p0. To complicate things even more, typical ladle sizes 
of 250 metric tons and the very purpose of continuous 
casting widen the required time window of analysis 
further. Full casting sequences, including the corre-
sponding meltshop campaign, have to be considered 
to describe the casting context of each slab.

Process analyzer tools allow for two-parameter com-
binations of casting and/or meltshop parameters and 
their influence on achieved quality of particular steel 
grades or selected sets of cast slabs. In ML terminol-
ogy, the process analyzer allows the feature space of 

the caster. For many non-trivial root-cause analyses, 
this tool alone allows engineers to find solutions in 
days compared to years (Fig. 3).

Automated Computation of Optimal Casting Parameters — The 
segment data displayed in the process analyzer also 
serves as a training set for surface quality models that 
are an integral part of the automated AI-based casting 
optimization. These models are based on Gaussian 
processes where recent algorithmic advances allow 
efficient multi-GPU acceleration and enable applica-
tions on large-scale data sets10,11 — the magnitude of 
available categorical and continuous meltshop, cast-
ing and rolling parameters became computationally 
tractable with this kind of algorithm. The input of 
such a model is a set of casting parameters (e.g., cast-
ing speed, submerged-entry nozzle (SEN) submersion 
level, mold width) and heat parameters (e.g., super-
heat temperature and chemical composition) from 
which a probabilistic measure of the expected surface 
quality (e.g., expected rate of slivers) for a specific 
downstream line (e.g., galvanizing) is computed.

Based on these models, optimal values for continu-
ous and discrete casting and meltshop parameters are 
searched, i.e., which parameters result in the best 
quality (e.g., minimization of slivers). Here, the chal-
lenge lies in high dimensionality of the parameter 
space (numerous meltshop and casting parameters 
have to be considered within one multi-variate model) 
and in the highly complex constraints that are put on 
the optimization. These constraints originate from 
both business requirements and physical limits of the 
casting equipment and often introduce dependencies 
between multiple casting parameters that are subject 
to optimization.

Via a direct integration into the casting planning 
system, the optimization goes far beyond the com-
putation of optimal parameters per slab. Indeed, the 
AI-based model reorders slabs within the casting 

Centralized coil map: defect classes (colors) from different mills (symbols) and sheet sides (top and bottom in individual axes) 
are mapped into a joint coordinate system. Individual defect images (left) can be displayed by simply hovering the markers.

Figure 2
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sequence to minimize quality deviations and down-
grading/reallocation. The system produces individu-
alized optimal settings for all slabs within a sequence, 
as well as for each individual heat and for the full 
sequence. These are written back into the plant’s 
level 2 system in a fully automated way.

Additionally, the caster operators are supported 
through live AI models that recompute the optimal 
settings continuously, taking into account changes 
that occur during the running sequence. This allows 
for recommendations to be made in on-line mode, 
such that operators can react in an optimal manner 
to each potential deviation from the original casting 
plan.

The operator at the casting machine then orders 
heats from the meltshop matching the proposed 
optimal configuration and cast accordingly. The next 
section explains how the heat specifications for a heat 
arriving at the caster can be met precisely.

Targeting Tundish Temperatures 

While the preceding section includes temperature 
modeling and optimization, its focus lies on the cast-
ing optimization to reduce casting-related defects in 
the finished flat product. In this section, the focus 

shifts to cost reduction via advanced temperature con-
trol. This as well poses a cross-process optimization, as 
it covers the full range of primary and secondary met-
allurgy treatments. In addition to others, this model is 
running in the basic oxygen furnace (BOF) meltshop 
at ArcelorMittal Duisburg, Germany,2 and in the 
electric arc furnace (EAF) meltshop of Marienhütte 
in Graz, Austria. The approach is suitable for large, 
complex meltshops, but is also profitable for smaller 
plants. The case of ArcelorMittal Duisburg also shows 
that AI-based temperature control is perfectly suitable 
for handling the vast quantity of different steel grades 
and the corresponding variety of heat treatment 
protocols that are in place at advanced meltshops of 
high-quality long products steelmakers. Again, quick 
wins can be achieved by focusing on the steel grades 
that are produced frequently and tend to have the 
highest temperature variance or temperature buffers 
and hence promise the highest benefit.

One of the most important parameters throughout 
secondary metallurgy is the temperature of the liquid 
steel at the different processing stations. Depending 
on the steel grade and treatment protocol, the tap-
ping temperature can be lowered by up to 10 K and 
still arrive at the caster with a sufficient buffer above 
the liquidus temperature, and thereby save energy and 
cost. This becomes possible by reducing temperature 

Interactive exploration of the feature space of a caster. The process analyzer provides historical surface quality (derived from 
surface inspection at hot rolling, pickling, galvanizing) as a function of various casting and meltshop parameters.

Figure 3
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variations, which at the same time avoids other tem-
perature-related disruptions during heat treatment. 
A side benefit of temperature control is an optimized 
scrap rate and quality at the BOF. It supports reducing 
energy consumptions and CO2 emissions, too (Fig. 4).

These goals are achieved by integrating AI-based 
temperature control into the plant’s level 2 and level 3 
systems. This ML engine uses deep neural networks 
and other probabilistic models to predict optimal 
tapping, ordering, entry and exit temperatures for 
the BOF/EAF and for each secondary metallurgy sta-
tions. By considering more than 200 relevant features 
such as argon blow time series, temperature measure-
ments, chemical analysis or ladle properties scattered 
across the heat’s journey through the meltshop, the 
ML models allow temperature prediction for all 
sorts of different treatment routes between the con-
verter/electric arc furnace and the casting machine. 
Internally, the models can be associated to different 
steel grades based on their chemical compositions, 
allowing quick extensions to new unseen steel grades 
for which no training data would otherwise be avail-
able and enabling transfer learning between the dif-
ferent grades. Also, the model tracks the heat states of 
individual ladles and their rotation within the plant 
to account for (missing) residual temperatures of the 
ladles.

First, each planned heat gets entry temperatures 
assigned with which it should arrive at the ladle fur-
nace and caster after passing through the planned 
secondary metallurgy stations. Then, the intersta-
tion temperature prediction models compute the 
best BOF/EAF tapping temperature that is expected 
to meet those requirements. In a second step, the 

intrastation temperature prediction module com-
putes an estimated tapping temperature once the 
main blow phase starts. This module takes into 
account various process parameters such as amount 
and composition of all additions like hot metal, scrap, 
slag formers and alloying, as well as blowing protocol 
and vessel condition. A similar model for the ladle 
furnace and degasser allows the operators to react 
quickly to the dynamic conditions deviating from 
schedule and ensure that the heat exits the station 
with the desired temperature.

Physical or empirical models usually get out of 
hand quickly when dealing with more than a handful 
of parameters. This is where the AI approach shines, 
as the large amount of accounted features allows for 
more precise predictions. In order to train the models 
on these large feature sets, historical production data 
covering more than two decades can be aggregated 
into the persistence layer of the software. Special 
training techniques thereby ensure that the model 
adapts to slow drifts or abrupt changes in the training 
data and hence automatically infers the relevance of 
training samples based on their age. Besides the his-
toric data, the relevant level 1 and level 2 systems of 
the plant are directly connected to the software con-
tinuously updating the training data. This live inte-
gration is also used to implement a browser-based user 
interface for performance and prediction monitoring 
of the model from remote. Via a continuous data feed 
back into the level 2 system, custom integrations to 
the plant’s operator HMIs can be implemented.

The training and evaluation of the ML models fol-
low the standard best practice where the available data 
is separated into test and training sets. On the test set 
covering a selection of weeks over the last 18 months, 
the models reach a root mean square error (RMSE, 
average absolute deviation of measured vs. predicted) 
of ~3°C,2 which is on the scale of the temperature 
measurement error itself. Following the predictions 
of the models, therefore, allows for the gradual reduc-
tion of the tapping temperature levels of heats arriv-
ing at the tundish by up to 10°C, depending on steel 
grade. At the same time, a positive impact on the cast 
steel quality by a more uniform solidification profile 
along the strand due to improved temperature homo-
geneity in the continuous casting process is expected.

Conclusion 

This article described the requirements and potential 
solutions for a holistic vertically integrated optimi-
zation of the steelmaking process for flat and long 
products. The feasibility of the proposed solutions is 
demonstrated 24/7 as those applications are actively 
used in steel production at multiple plants, each 
with their individual product mix, equipment setup, 

Temperature variance reduction and tapping temperature 
reduction with AI-based temperature control. Predicting 
the entry and exit temperatures in primary and secondary 
metallurgy and recommending optimal temperatures for 
all stations live during the meltshop processing avoids 
unnecessary heating, reblows, process instabilities and cold 
ladle returns.

Figure 4
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This paper was presented at AISTech 2021 — The Iron & Steel Technology 
Conference and Exposition, Nashville, Tenn., USA, and published in the AISTech 
2021 Conference Proceedings.

peculiarities and data structures. Upcoming projects 
will transfer and extend the presented technology and 
software components to additional production routes 
of steelmaking.
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