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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Classifier Tuning of Automated Surface Inspection System

While automated surface inspection 
has been continuously improved 
over time along with computer hard-
ware and software advances, auto-
mated surface inspection systems 
(ASIS) have been widely deployed 
to many flat carbon steel processes, 
including hot rolling,1 picking,2 tin-
ning, hot-dip galvanizing (HDG),3 
etc., for surface quality control and 
assurance. 

ASIS deployed in the HDG pro-
cess has a longer history than other 
processes as the coating line process 
has ambient temperature and the 
line speed is slower. There are quite 
a few commercial ASIS available on 
the market that can be deployed in 
the coating line process. They all 
typically use industrial line scan 
or area scan cameras to perform 
real-time image acquisition, the tra-
ditional image processing for defect 
detection and pattern recognition 
techniques for defect classification.4 
However, the image data processing, 
pattern recognition algorithms and 
software graphical user interface 
(GUI) have been quite different 
among these commercial systems.

AM/NS Calvert LLC installed 
an ISRA Parsytec ASIS in 2008. 
In order to provide higher-quality 
products, Calvert quality managers 
have set up initiatives to further 
improve all the ASIS performance 
and its uses since 2016. This paper 
mainly covers the ASIS classifier 
tuning work for improved ASIS clas-
sification performance. It starts with 
a general review of Parsytec ASIS 
configurations at AM/NS Calvert 
#3HDGL (hot-dip galvanizing line), 
then presents a decision tree type of 
classifier tuning method, and objec-
tives and procedures using the clas-
sifier tuning for galvanized bright 
field (GI-BF) material at Calvert 
#3HDGL as an example. 

Classifier Tuning Method and 
Procedures 

ASIS Configurations at AM/NS Calvert 
#3HDGL — ASIS is a camera-based 
vision system enabling the on-line 
detection, localization and classifi-
cation of surface defects while the 
strip is running. A picture of the 
ASIS installation at Calvert #3HDGL 
is shown in Fig. 1. The system was 
installed in the end of the coating 
line prior to the sidetrimmer. It 
consists of bright field and dark 
field of views for each side. Each 
field of view has two 4K line scan 
cameras. The maximal speed of the 
line is 260 m/minute. This results 
in the image resolution of 0.25 mm 
x 0.5 mm/pixel. 

Classifier Tuning Method — A general 
method of an ASIS tuning and per-
formance optimization is shown in 
Fig. 2.6 It includes defect detection 
tuning and classification tuning 
tasks. Both tasks require specifying 
the business objectives of system use. 
The business objectives of system 
use guide how the system should be 
configured and tuned along with 
the process information. After the 
system is initially tuned, the sys-
tem performance can be evaluated 
through coil inspection maps and 
user feedback. The information is 
then fed into the system, fine-tuning 
until the system performance reach-
es an optimal status. The tuning 
chain is a closed loop, which nor-
mally requires two to three circles. 
In order to reach an optimal system 
performance, two types of knowl-
edge are required, one of which is 
quality and process knowledge and 
the other of which is ASIS tuning 
knowledge. 

Calvert #3HDGL has been 
producing galvanized (GI) and 
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galvannealed (GA) materials for automotive and 
some of industrial non-automotive products. The 
main use of the system is the assistance tool of quality 
assurance related to surface defects and process trou-
bleshooting. During the tuning process, the authors 
were able to consult finishing line quality experts 
and the line inspectors, collect the requirements of 

the system use, get daily coil rejection reports, draft a 
production list with process parameters, receive their 
feedback on the system use and so on. This has been 
one of the critical tasks to tune the system toward an 
optimal performance. 

Classifier Tuning Objective and Procedure — The classi-
fication performance for a certain defect is evaluated 
by two parameters: accuracy rate and confidence rate. 
The accuracy rate defines the percentage of the defect 
correctly classified by the classifier. The confidence 
rate defines the percentage of true sample numbers 
in the classified samples for a certain defect.7 To meet 
the business needs of a system use, the classification 
tuning objective is to tune a classifier to be able to 
more accurately classify all the real gross and impor-
tant defects (with higher accuracy rate) and reduce 
false positive ones (as high classification confidence 
rate as possible). Confusions between gross and real 
defects, including important and less important ones, 
are more accepted than incorrectly classifying an 
important defect. 

The classifier tuning procedure includes building 
a defect library, selecting defect features, setting up 
the decision tree parameters and creating a classifier 
model, and evaluating the classifier performance and 

classifier fine-tuning (shown 
in Fig. 3). Based on the clas-
sifier test results and trying 
to meet the classifier tuning 
objective, further improvement 
of the classifier can be done by 
enriching defect library, select-
ing optimal feature set and/or 
setting up different classifier 

Schematic drawing of hot-dip galvanizing line (HDGL) process (a)5 and automated surface inspection systems (ASIS) bottom 
side installation at AM/NS Calvert #3HDGL (b). 

Figure 1

(a)	 (b)

A flow diagram of classifier tuning procedure.

Figure 3

Building 
defect library

Selecting 
defect features

Setting up 
parameters and 

building classifier

Classifier performance 
evaluation and 

fine-tuning

Flow chart of a typical ASIS tuning.

Figure 2
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parameters. The whole procedure will be repeated 
several times until a satisfactory classifier result is 
reached. 

Building Defect Library — One of the most important 
steps of creating a good classifier is to build a defect 
library, which can be representative to both impor-
tant surface defects and pseudo defects in the normal 
production environment. When building the defect 
library, the best practices have been established based 
on the previous study7 and experiences. These best 
practices are: 

1.	 	Group similar defects into one class.
2.		Try to limit the total class categories (10 to 

15 is better, but 20 to around 30 classes are 
good). 

3.		Get roughly equal sample numbers for each 
defect class, and the ratio between the larg-
est to the smallest group/class should not 
exceed 5 to 1. 

4.	 	Try to make the defects in each class have 
similar appearance variety and avoid collect-
ing the same defect images in one class; also 
avoid collecting the same or similar defect 
images from one class in two different classes. 

5.		Do not try to group defect classes based on 
defect severity. 

6.		Do not collect defect images in which feature 
values are not calculated. 

7.	 	Do not collect defects that were classified by 
pre-rule classifiers. 

8.		Do not collect many defect images from an 
unusual process into the defect library. 

The ISRA Parsytec system includes software for 
users to easily complete the whole classifier tuning 
procedure (shown in Fig. 3). It has multiple func-
tions to ease the classifier creation process and a user 
interface for fast image collection on multiple coils 
for certain defects; it also provided the similarity 
function to aid in the certain image collection and a 
user-friendly interface for users to quickly sort defect 
images. In addition, the classifier parameters can 
be easily accessed and set up through this software. 
One example of the GUI for the image collection 
on multiple coils is shown in Fig. 4. An example of 
defect image sorting best practice is shown in Fig. 5, 
where the images with the single scratch and multiple 
scratches are put in one class since they have similar 
similarity value. 

Graphical user interface (GUI) of image collection from ISRA 
Parsytec software.

Figure 4

An example of defect image sorting best practice. 

Figure 5

http://www.aist.org


33
FEB 2021 I  IRON &

 STEEL TECHNOLOGY I  AIST.ORG

Based on the Calvert system’s configurations and 
system setup, four defect libraries were built: GI-BF, 
GI dark field (GI-DF), GA bright field (GA-BF) and 
GA dark field (GA-DF). The statistics of the defect 
libraries are shown in Table 1. 

Selecting Defect Features — The second step of build-
ing a classifier is to select defect features. The ISRA 
Parsytec system provides more than 800 defect fea-
tures. An interesting question is if the high number of 
features could cause the classifier overfitting, which 
presents a poor generalization ability to the unfore-
seen/new defect image data. This study aimed to veri-
fy if the feature number for the decision tree classifier 
needed to be reduced. Feature reduction includes two 
components: feature selection and feature extraction. 
The feature selection tries to find a subset of the origi-
nal set of variables, or features, to get a smaller subset, 
which can be used to model the problem. It involves 
three ways, which are filter, wrapper or embedded.8 
The feature extraction reduces the data in a high 
dimensional space to a lower dimensional space.8 The 
methods of dimensionality reduction include prin-
ciple component analysis (PCA), linear discriminant 
analysis (LDA) and generalized discriminant analysis 
(GDA).8 This section shows a study of PCA-based 
feature reduction algorithm and its effect to the final 
classifier performance. 

PCA is a projection-based method that transforms 
the data by projecting it onto a set of orthogonal 
axes.9 It finds the best linear combinations of the 
original variables so that the variance or spread along 
the new variable is optimized.9 For this study, the 
original refined GI-BF defect library was used. The 

defect features for this defect library were extracted 
using ISRA Parsytec ASIS software. These features are 
fed into the PCA function in the Python development 
environment. The best 274 components/features with 
equal to and over 99% variance were selected (Fig. 6) 
for the classifier performance test. To compare the 
effectiveness of the top 274 features with the original 
classifier, the classifier using the 274 features was 
created using the same GI-BF defect library. The 
two classifier test results using new inspection image 
data (total 914 defects from four semi-exposed GI-BF 
coils) are shown separately in Tables 2 and 3. It was 
also noticed that the classifier training time using 
more than 800 features takes about 5 times longer 
than the one using the top 274 features. Based on 
the results, it was concluded that the classifier using 
the PCA-based feature reduction algorithm can bring 
similar performance to the one using the full set of 

Feature variance chart using principle component analysis 
(PCA) algorithm.

Figure 6Table 1
Statistics for the Four Defect Libraries

                       Material group 
Defect information GI-BF GI-DF GA-BF GA-DF

Total defect number 4,076 3,957 3,979 4,154

Total defect classes 32 30 33 32

Table 2
Classifier Result Using All the Features 

 Assigned class 
Predicted class 

Gross 
defect

Pseudo 
defect Total 

Confidence 
rate

Gross 43 — 43 100%

Pseudo — 772 772 100%

Non-classified defects 2 97 99 —

Total defect number 45 869 914 —

Accuracy rate 95.6 88.9% — —

Table 3
Classifier Result Using the Top 274 Features

 Assigned class
Predicted class 

Gross 
defect

Pseudo 
defect Total 

Confidence 
rate

Gross 42 2 44 95.5%

Pseudo — 771 771 100%

Non-classified defects 3 96 99 —

Total defect number 45 869 914 —

Accuracy rate 93.3% 88.7% — —

http://www.aist.org
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features. It could also be estimated that the classifier 
may take less time to classify new defects. This would 
be extremely useful if the system was configured to 
have a higher sensitivity of detection parameters and 
process a large amount of data in real time. 

Setting Up Classifier Parameters and Building Classifier 
— The third step of classifier tuning is to configure 
the classifier parameters and create a classifier model. 
The ISRA Parsytec system has provided a decision tree 
classifier algorithm, which appears to have used the 
pruning technique and boosting algorithm for good 
classifier generalization ability. The boosting param-
eter is the total number of concurrent classifiers. The 
default number is 10. The user is able to put in a 
maximum value of 12. If a higher number is chosen, it 
takes more processing time with potential better clas-
sifier generalization ability. In this case, there were 
12. There are two pruning parameters: pre-pruning 
and post-pruning. The default values were used for 
these two parameters. The “vote” parameter appears 
to be applied during the single decision tree classifier 
process. The smaller number of the vote parameter 
can reduce unclassified defects. The “confidence” 
parameter appears to be applied among different 
concurrent classifiers. Reducing this value can also 
bring fewer unclassified defects. During the initial 
classifier tuning stage when there are not enough 
defect samples, these two parameters are set up as the 
default value of 0.6. After the defect library is fully 
developed, both parameters can be reduced to 0.35 so 
as to reduce total unclassified defect number. 

After the classifier parameters are set up, the clas-
sifier can be automatically trained. But the first clas-
sifier is not normally the one meant to be put on-line 
and further fine-tuning of the classifier is needed. 

Classification Performance Evaluation and Classifier Fine-
Tuning — Classifier tuning is a repeated process 
(shown in Fig. 3). After the first classifier is created, 
it can be tested against the training defect library. 
The confusion matrix of the classifier performance 
can then be used to guide the defect library refine-
ment. An example of the confusion matrix is shown 
in Fig. 7a, where C/T means the assigned classes (clas-
sified by the experts) against classes classified by the 
classifier. Using the first classifier results, the uncer-
tain defects can be checked between the gross defects 
and important defects and the defects grouped with 
similar appearance in one class; one can check if 
there are duplicated defect samples in one class and 
if less representative defects are in the defect class by 
looking at the appearance of unclassified defects. The 
verification process is intended to further improve 
defect library quality for an improved classifier. In 
this way, it takes a few circles for a classifier to be finely 
tuned and used in the on-line system. 

After the off-line tuning of a classifier and its defect 
library, if the classifier results are satisfied, the clas-
sifier can be promoted to the on-line system. It may 
take a couple more circles to further improve the on-
line classifier performance by collecting unclassified 
and falsely classified important defects and re-sorting 
them into the defect library. After this procedure, 
the finely tuned classifier for GI-BF field is shown in 
Fig.  7b. The classifier results on unseen image data 
are shown in Fig. 8. 

Conclusions and Discussion

This paper presented a decision tree–based classifier 
tuning method and procedures, which includes the 

Classifier performance: confusion matrix for the first classifier (a) and confusion matrix for the finely tuned classifier (b).

Figure 7

(a)	 (b)
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defect library building best practices, feature selec-
tion, classifier parameter setup, and classifier per-
formance evaluation and its fine-tuning. Using the 
GI-BF classifier building process at Calvert #3HDGL 
as an example, it highlighted the defect library build-
ing best practices. In the feature selection procedure, 
it studied the PCA-based feature reduction method 
and its effect to the final classifier performance. It 
can be concluded that the reduced feature sets (274 
features) can achieve similar classifier performance 
with reduced classifier training speed and potentially 
reduced on-line classifier execution speed than the 
ones using the whole feature set. 

While it is tedious and takes time to build a repre-
sentative defect library, future research topics in this 
area could be developing methods and algorithms 
for creating fake representative defect images, auto 
defect class sorting, and higher generalization ability 
of a classifier. 
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Classifier results on unseen image data (four GI-BF semi-exposed coils in the normal production environment): classifier 
performance (a) and examples of classifier results (b).

Figure 8

(a)	
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