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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

AI Application to Melting Temperature Prediction in an 
Electric Arc Furnace

World steel producers face new chal-
lenges every day due to the need 
to be competitive in their markets 
as well as to produce high-quality 
products to meet the expectations 
of their most demanding customers.

This situation implies two things:

 • Processes must be well adjust-
ed to maintain product prop-
erties within the most strin-
gent tolerances and reduce 
the dispersion range.

 • It is critical to minimize 
operational risks that could 
generate machine downtimes, 
impacting the overall equip-
ment effectiveness (OEE) of 
the processes.

For both challenges, the combina-
tion of technologies and disciplines 
belonging to Industry 4.0 such as big 
data and artificial intelligence (AI) 
makes it possible to have powerful 
platforms for prediction, explorato-
ry analysis and descriptive analytics.

Nowadays, steel production can 
be done through two main routes: 
blast furnace and electric arc fur-
nace (EAF). A mix of scrap and 
direct reduced iron (DRI) is used 
for the production of commercial 
steel that will be transformed into 
slabs for hot rolling. During the EAF 
process, a combination of scrap and 
DRI is melted to produce molten 
steel at temperatures up to 1,630ºC. 
Electrical energy and energy from 
exothermic reactions are employed 
to perform such melting. As with 
many batch production processes, 
increasing productivity while reduc-
ing energy consumption is impor-
tant to reduce operational costs, so 
control of process variables such as 
temperature in each stage in the 
EAF process plays an important role 
in process control.

Due to high temperatures in the 
EAF and the presence of slag cover-
ing the molten steel, it is not pos-
sible to have an on-line continuous 
temperature measurement system. 
Only a few measurements at around 
the end of melting are performed 
using a robot equipped with a ther-
mocouple. This represents a chal-
lenge that can be addressed using 
mathematical models in combina-
tion with machine-learning tech-
niques to predict the temperature 
of the molten steel using process 
variables that can be measured. 
Having a temperature prediction 
with reasonable accuracy can lead 
to better DRI control in the EAF 
because the load profile of DRI 
can be determined according to the 
amount of energy that will be used 
to melt the solid mass; consequently, 
this will save tap-to-tap time and 
energy consumption and will result 
in a better control of the goal weight 
of the batch.

This paper will expose the under-
lying physical complexities driving 
the melting process and how a solu-
tion to this problem was structured 
using AI capabilities. In addition, it 
will comment on the development 
process with the support of agile 
methodologies and scrum, as well as 
the learned lessons.

Challenges and Project Goal 

Introduction — The objective of this 
work is to provide an introduction 
and present a real case of one of the 
disciplines of Industry 4.0, big data/
analytics/AI, showing how data sci-
ence can contribute to create value 
and business benefits for the steel 
production companies, through the 
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development of predictive models to explain and pre-
dict process behaviors.

This case belongs to typical business use cases with 
AI, which include:

 • Virtual sensors: Predictors for spots where it 
would be difficult or impossible to measure 
physically.

 • Process optimization in terms of productivity, 
equipment efficiency and production costs.

The expected benefits of the development of these 
disciplines, in relation with this case, are:

 • Reduction of tap-to-tap time by knowing the 
steel bath temperature precisely.

 • Avoid the damage in firebricks that cover 
the internal of furnace as a consequence 
of overheating by having more control over 
temperature.

 • In relation to the previous issue, reduce energy 
consumption by avoiding overheating.

 • Save costs associated with temperature mea-
surement cartridges.

Challenges — By analyzing the physical problem, 
several characteristics and challenges were found in 
order to develop a model for temperature prediction:

 • In EAFs where metallic charge is composed of 
metal scrap and DRI, the mix is approximately 
35% metal scrap and 65% DRI. After loading 
the scrap, the melting process is started by add-
ing electrical and chemical energy.

 • Once the melting process is started, the DRI is 
added by controlling the charging speed.

 • The objective melting temperature is between 
1,600°C and 1,630°C.

 • The DRI charging speed is adjusted to get 100% 
of the melted metal at the required melting 
temperature.

 • The temperature and O2 ppm measurements 
are taken based on the percentage of the melt-
ed metal predicted by a physical model.

 • The procedure foresees three measurements: 
the first with 90% of the melted metal, the 
second when approximately 15 metric tons of 
DRI remains, and a final one to confirm the 
complete melting.

Fig. 1 shows the evolution of percentage melted iron 
versus consumed energy, where the event of first tem-
perature sample taken and the final one can be seen.

In the development process, several issues were 
found to develop a model. Because of the process non-
linearities and the changes in the quality of the DRI, 
the predictions of the percentage of melted metal by 
white box physical models are not always accurate. 
This is where machine learning could exhibit its major 
advantages against white box models.

These inherent uncertainties determine when the 
bath temperature is taken. The value will be different 
than expected and consequently additional tempera-
ture measurements will be required, until reaching 
the goal casting value.

These extra temperature measurements create a 
cost increase due to the additional temperature car-
tridges. The EAF productivity is also impacted since 
it generates process stoppages to allow the measure-

ment device to enter the furnace.
Using this approach, based on the 

machine-learning model, the quantity of 
temperature measurements are limited to 
two, one with approximately 90% melted 
metal and one to verify bath temperature 
at the end of melting.

Project Goal — The project goal is to 
predict the temperature in the last 10 
minutes of the melting process, starting 
the prediction with the first temperature 
sample taken from the EAF.

The prediction error must be less than 
±15°C for a standard deviation of 1σ con-
sidering a normal error distribution.

Development Process 

The development process was based on 
agile methodology, more precisely scrum Percentage of melted iron vs. consumed energy.

Figure 1

http://www.aist.org
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methodology. Scrum is an iterative and incremen-
tal methodology where development is broken into 
fixed time slots called sprints, which are 2–4 weeks in 
duration.

The methodology defines the following roles for the 
project participants:

 • Product owner: Represents the interests of 
the customer and could be a real market cus-
tomer or an internal customer of an organiza-
tion. This role requires high knowledge of the 
domain/business where the product under 
development will work. This role must establish 
the priorities of the project activities in order 
for the functionalities that are incrementally 
built to be aligned with business priorities.

 • Scrum master: Leader of the development 
team; responsible for project coordination. 
However, unlike traditional project manage-
ment, the scrum master is more like a facilita-
tor or a coach, a person focused on clearing 
the obstacles team faces, thinking they count 
as part of a team while being autonomous and 
self-managed, more than the traditional role of 
project manager.

 • Team members: Self-managed developers, with 
an excellent communication level and capacity 
to do agreements quickly, and a good level of 
conflict resolution, focused on problem resolu-
tion, but always having in mind concepts such 
as business constraints and business value.

In each sprint, there is a sequence of events that 
take place with the participation of stakeholders of 
the project. These events are:

 • Sprint planning meeting: In this meeting, the 
team agrees with the product owner on the 
sprint goals that will be disaggregated in what 
is called “user stories” (in this case, named 

“data science requirements”) and requirements 
that must be fulfilled before the end of sprint.

 • Mid-sprint review meeting: An informal meet-
ing that takes place at the midpoint of the 
sprint, where the product owner, scrum master 
and team meet in order to review the project 
progress.

 • Sprint review meeting: An informal meeting in 
which the development team, the scrum master, 
the product owner and the stakeholders must 
attend. The team presents the results obtained 
across the sprint and determine what is fin-
ished and what isn’t.

 • Retrospective meeting: As described in the 
scrum guide, the sprint retrospective is an 
opportunity for the scrum team to inspect 
itself and create a plan for improvements to 

be enacted during the next sprint. The sprint 
retrospective occurs after the sprint review and 
prior to the next sprint planning.

This methodology fits very well with the nature of 
data science projects. As its name suggests, data sci-
ence projects are founded on a scientific method that 
sets the following sequence, called an “experiment”:

 • Question to be answered.
 • Hypothesis to be validated.
 • Design and execution of experiments.
 • Outcome analysis that confirm or reject the 

hypothesis.
 • Agree with previous step, determine next step.

As it can be seen, a data science project consists of a 
sequence of experiments and has an iterative nature 
compatible with scrum structure. The methodology 
fits well from the perspective of project execution as 
well as from the perspective of risk mitigation and 
investment optimization, because at the end of each 
sprint it’s possible to continue with the project or 
abort it if the results are not promising. The inherent 
uncertainty nature of this kind of project is mitigated 
through multiple decision points in time.

In this case, scrum was instanced with the following 
characteristics:

 • Sprints of 2 weeks in duration.
 • Required 12 sprints to obtain a model ready to 

be implemented in the edge control.
 • Team consisted of one scrum master, one data 

engineer and two data scientists.
 • The project was developed simultaneously with 

another two data science projects.

Technical Approach 

Characterization of the Physical Problem — In order 
to increase background knowledge that allows for 
enhancing the stage of “feature engineering” in the 
modeling process, it’s convenient to analyze some 
aspects of the underlying physics.

In the first place, the EAF behavior is non-linear. 
This is because of the nature of the current and volt-
age of the electric arc and time-varying loads of many 
chemical additions. The electric arc behavior can be 
described with existing models, such as the Cassie-
Mayr arc model, which takes into account the conduc-
tivity of electric arc in relation with voltage, current, 
time constant of electric arc and the cooling power 
of arc. From the equations, its non-linear behavior is 
obvious.

Second, in relation to energy balance models exist-
ing in the market, many are based on the change of 

http://www.aist.org
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the electrical energy, energy by burners, energy by 
chemical reactions and cooling. In real-time practice, 
there are not available independent measurements of 
all quantities. It’s not possible to know the losses of 
exit gases, due to the lack of gas analyzer; therefore 
this option must be discarded.

Third, knowing the amount of oxygen in the bath 
would be beneficial in order to enhance model accu-
racy. However, nowadays the only way to know it is by 
taking samples of the bath to measure both tempera-
ture and ppm of oxygen. The model must go without 
continuous ppm oxygen measurement.

Finally, the temperature measurement occurs in 
the last stage of the process, around the last 10 min-
utes (Fig. 1), meaning the model doesn’t know the real 
temperature until this time. With those limitations, 
the strategy of the model was focused on the changes 
of all mass fluxes (carbon, cal, gas, oxygen, metallic 
mass) and electric power.

Data Collection — A significant amount of melting 
batches was selected to make the data set (Fig. 2), with 
measurements from on-line variables existing during 
the melting process. Only batches with the best tap-to-

tap time were selected.
The variables that were taken into 

account represent: total metal (scrap and 
DRI) and chemical mass, total energy that 
can be measured on-line, and also the 
fluxes of mass and energy.

The data to be integrated comes from 
different data sources: structured data 
from relational databases and time series 
from data historians. The big picture is 
shown in Fig. 3.

Data Characterization — The distribution 
of variation of temperature , ΔT = Tbatch[i] 
– Tbatch[i–1], of these melting batches is rep-
resented in Fig. 4. As it can be seen, values 
of ΔT appear very large in the distribution, 
meaning there are outliers in the regis-
tered data. In practice, the measurements 
begin at approximately 1,560°C and span 
until 1,650°C. ΔT never can be higher 
than 90°C.

The big picture of the data processing pipeline.

Figure 3

Working data set.

Figure 2

http://www.aist.org
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With this information, just batches with 
0 < |ΔT| < 85 were considered.

The attributes considered to filter melt-
ing batches to build the data set:

  • Base: Furnace production.
  • Scrap loads: One load.
  • Tap-to-tap time: < 63.1 minutes.
  • % DRI: 66–68.
  •  Starting, drained and delayed 

melted batches were not included.

Modeling — The first approaches consid-
ered DRI because it is the most important 
parameter to control the metallic yield, 
which has an impact on plant productivity. 
When a DRI with low metallization (for 
example 87–89%) is melted, the levels of 
FeO at the end of a batch can reach values 
as high as 45–50 mass%.1 Because the 
metallization of DRI is around 98% and 
is very constant for this case, this variable 
has no impact on the results, therefore it 
was not included in the model.

Later, a variable was constructed that 
represents the cooling part in order to 
include one part of energy losses. This 

“cooling variable” has the information 
of water temperature of panels in shells. 
This variable improved 4% in the perfor-
mance of the model, but the result was not 
the expected one.

Finally, after some sprints of modeling 
the approach to the problem changed. 
The new approach focused on the change 
of all mass fluxes and electric power. The 
model inputs then were the difference of 
each variable with respect with their previ-
ous value. This treatment with variational 
quantities and not with absolute quanti-
ties gave better results.

The data set collected was split into 
training and testing subsets with an 80:20 
ratio. It was trained and validated with the 
training set by cross-validation.

Deep-learning neural network regres-
sor was used with five dense hidden lay-
ers of up to 256 neurons in one of them 
and exponential linear unit activation 
function.

The scheme in Fig. 5 summarizes the 
development of the model. The first tem-
perature measurement is an input value.

Temperature variation between measurements on melting batches.

Figure 4

Distribution of the prediction error.

Figure 6

Diagram of the modeling process for prediction of the furnace temperature.

Figure 5
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Results — The final model based on deep 
learning showed the best performance. 
The model performance can be summa-
rized as:

 • ±14ºC prediction error for 1σ of 
predictions.

 • The comparative between predictions 
and real values of temperature is rep-
resented in Fig. 6.

 • The distribution model error for the 
fixed tolerance of ±14ºC can be seen in 
Fig. 7.

Conclusions 

As could be seen in the examples, the use 
of industrial analytics to predict process 
behaviors is a fact, and not only a theo-
retical formulation. If the required condi-
tions to develop analytical models are met, 
that is, historic data availability, data qual-
ity, relevant process variables of the pro-
cess instrumentation, and the availability 
of experienced domain experts to work in a multi-
disciplinary team with data scientists, it is possible to 
create value through analytics-based innovations.

It is not an easy path, but the potential business 
value to be generated implies a substantial return on 
investment and could enable organizations to develop 
new differentiating strategies in the steel market.
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Predicted temperature vs. real temperature.

Figure 7

Did You Know?

worldsteel Announces steelChallenge-15 World Championship Finalists 
The Regional Championship took place online for 24 hours on 25 November 2020. This year’s steelChallenge attracted more than 
1,200 participants representing over 50 companies and about 90 academic institutions from 27 countries. 

The top-placed people in the Industry and Student categories will be invited to the World Championship in April 2021. Also 
qualifying for the World Championship are the first-placed people in each of the five geographic regions.

steelChallenge-15 utilized steeluniversity’s secondary steelmaking and continuous casting courses in a combined simula-
tion. Competitors were tasked to produce a grade of steel meeting technical requirements at the lowest cost per metric ton. The 
simulation used a grade of steel specifically designed for steelChallenge-15. Competitors could undertake unlimited “runs” of the 
simulation during the 24-hour competition period. The best run of each competitor determined their score and placement in the 
Regional Championship.

The World Championship finalists are:

Student Category
 •  Andre Massaccesi Guimaraes, University of Westminster,  

U.K.
 •  Darley da Silva Lima, Universidade Federal do Ceará,  

Brazil
 •  Abdelrahman Hosny Gomma, Abu Dhabi University,  

United Arab Emirates
 •  Zhihao Zheng, Wuhan University of Science and  

Technology, China
 • Kwon Ik Hwan, Dong-A University, South Korea

Industry Category
 • Alexander Nesmeev, TMK, Russia
 •  Bruno Galdino Sousa, Companhia Siderúrgica do Pecém, 

Brazil
 • Uday Kumar Bhakat, Tata Steel Ltd., India
 • Xiaowei Shi, HBIS Group, China
 • Jungho Choi, POSCO, South Korea
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