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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Machine Learning–Based On-Line Model for  
Slag Conditioning in Ladle Furnaces at Ternium Mexico

The importance of slag has been 
very well understood by the steel-
making industry to cut the cost of 
producing quality steel. In a general 
sense, the primary purpose of the 
slag is to absorb metallic impurities, 
as well as cover the arc produced by 
electrodes to protect the refractory 
from arc flare; protect the metal 
from oxidation; control the steel 
oxygen levels and chemistry of the 
steel; avoid oxygen and nitrogen 
pickup; reduce temperature loss; 
and help in dephosphorization and 
desulfurization.1

Works that lead to the design 
and test of models to calculate with 
precision the required alloy and 
additions for electric arc furnace 
(EAF) and ladle furnace (LF) slag 
target chemical composition are of 
interest for steelmakers and have 
been reported in the literature.2–6 
These models for slag conditioning 
in LFs encounter a major drawback 
that compromises the precision in 
the calculation of the slag chemical 
composition, affecting the perfor-
mance of the model at the end: the 
uncertainties associated with the 
EAF’s slag carryover weight; inho-
mogeneous distribution of slag and/
or the steel; increase of MgO con-
tent in the slag due to refractories 
wear; and the process parameter 
dispersion of the current heat being 
treated at the LF during the EAF 
operation.

The current work shows the imple-
mentation of a machine learning– 
based on-line model for slag con-
ditioning in ladle furnaces. The 
model calculates the lime and alu-
minum additions in order to achieve 
a slag target chemical composition 
and is based on a weighted k-Nearest 
Neighbor (wKNN) algorithm to cal-
culate an initial approximation of 

additions, and then a mass balance 
within an optimization algorithm 
to adjust the final additions. This 
approach addresses the drawbacks 
described in the previous para-
graph. The developed model was 
validated with process data from 
two ladle furnaces and the results 
demonstrate that a better control of 
the final slag chemical composition 
from heat to heat can be achieved.

Slag Conditioning During Refining 

The EAF’s carryover slag composi-
tion and weight, the tapping addi-
tions performed at the EAF, and the 
additions at the LF are important 
factors that constitute the slag in 
the LF.

EAF Slag and Tapping Additions — The 
melting process in the EAF is fol-
lowed by an oxidation stage where 
the formation of liquid slag is cru-
cial. Liquid slag formation is facili-
tated by the oxidation of silicon 
in the bath. The primary sources 
of slag formation are oxidation of 
metallic elements in the base metal 
such as manganese, silicon and alu-
minum, non-metallic elements such 
as sulfur and phosphorous, and min-
erals such as lime, spar and dolo-
mite. Also, oxygen blown into the 
melt promotes the oxidation stage. 
During this stage, excessive carbon, 
phosphorus, silicon and manganese 
oxidize to form magnesium oxide, 
carbon monoxide, silicon dioxide 
and diphosphorus pentoxide. 

(FeO) = [Fe] + [O] ; [C] + [O] = 
{CO} ; [Si] + {O2} = (SiO2)

 (Eq. 1)
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[Mn] + 1/2 {O2} = (MnO) ; 2[P] + 5/2 {O2} = (P2O5)

 (Eq. 2)

Slag absorbs these oxides and carries them as waste. 
CO bubbles floating up in the melt help the process 
and refine the steel. Slag collected on the top surface 
of the molten steel in the furnace, enriched with 
oxides, is removed in a process known as de-slagging.

During EAF tapping, lime, aluminum and ferroal-
loys are added. These additions promote the forma-
tion of slag in the LF and serve as alloy elements of 
the steel; each has a chemical composition and known 
yields that are described in Table 1.

LF Additions for Slag Conditioning — A general overview 
of the secondary refining practice is shown in Fig. 1. 

After the reception of the heat coming from the EAF, 
the slag conditioning stage begins. A slag sample is 
prepared and sent to the laboratory, which delivers 
the results of the chemical composition and sends it 
to the level 2 system in the automation platform of the 
meltshop. The results are displayed to the operators 
and then they make the decision about the weight 
of aluminum and lime that will be added in order to 
adjust the slag chemical composition to the desired 
target values. In addition, if there are delays on the 
laboratory, the operators perform a visual inspection 
of a slag sample after cooling it in advance.

The additions used for slag conditioning are alu-
minum and dolomite, from Table 1, and the target 
values for the slag chemical composition are Al2O3 
= 30%, CaO = 54% and BA4 = 1.8. After operators 
make the additions for slag conditioning, the process 

Table 1
Chemical Compositions of Tapping Additions

Tapping additions %CaO %MgO %MnO %Al2O3 %P2O5 %SiO2 %FeO %Al %Mn %Si

Aluminum 0 0 0 0 0 0 0 98.5 0.7 0

Dolomite 54.0 32.0 0 3.0 0 3.0 0.9 0 0 0

Limestone 90.0 1.7 0 0.3 0 1.3 0.3 0 0 0

Desulfurizing slag (RSR) 54.6 6.6 0 15.5 0 3.4 0 18.8 0 0

FeMn MC 0 0 0 0 0  0 0 0 74.5 0.4

FeMn STD 0 0 0 0 0 0 0 0 74.5 0

FeSi Mn 0 0 0 0 0 0 0 0 77.0 18.0

Secondary refining practice at ladle furnaces (LFs).

Figure 1

Heat 
Reception

Slag
Conditioning

Stage 3 Stage 4 Stage 5 Stage 6

TEMPOBJ     TEMPREAL               FLUJOARGONTAPON      FLUJOARGONDBLTAPON

http://www.aist.org


JU
L 

20
21

 I I
RO

N 
&

 S
TE

EL
 T

EC
HN

OL
OG

Y 
I A

IS
T.

OR
G

56 Digital Transformations

of verifying the slag condition by visual 
inspection and chemical analysis is repeat-
ed. After slag condition is OK, the second-
ary refining process at the LF continues. 
Hence, the aim of the present work is the 
design of an on-line model that can help 
operators calculate the amount of alumi-
num and dolomite that must be added to 
the heat being processed at the LF in the 
time frame of the slag conditioning stage 
in order to achieve the target chemical 
composition of the slag.

Machine-Learning Approach 

The proposed approach to solve the 
aforementioned problem is to combine a 
machine-learning algorithm, the wKNN, 
to compute what is called the “initial 
approximation” of the aluminum and 
dolomite additions for the slag condition-
ing at the LF, with a mass balance that 
allows the calculation of the slag chemical 
composition and an optimization algo-
rithm that recalculates the slag chemical 
composition after changing the alumi-
num addition, always checking the BA4. 
Finally, the approach should calculate the 
amount of dolomite that constitutes the 
best solution in terms of adjustment of the 
slag chemical composition target values.

Dealing With Uncertainties: Heat Data as 
Training and Test Set — The essence of 
implementing a model using machine 
learning is that a pattern exists. Such 
technology is useful for selection from 
a hypothesis set of candidate formulas, 
the best one that represents the pattern 
in terms of inputs and outputs. This 
hypothesis selection is based on data and 
computer algorithms that relies on prob-
ability concepts. Therefore, it makes sense to apply a 
machine-learning approach to find the patterns that 
conventionally the operator follows for estimation of 
aluminum and dolomite weights to be added during 
the slag conditioning stage at the LF. Fig. 2 shows the 
box and whisker plots of the BA4, Al2O3 and CaO of 
the heats that were selected to constitute the training 
and test set.

To build the model, 140 variables were considered, 
including process variables and chemical composition 
variables for both steel and slag from the two EAFs 
and two LFs at Ternium Mexico. Through several runs 
of the wKNN using design of experiments, changing 
the size of the input vector and the selected variables 

on each run, it was determined that 24 variables are 
relevant to model the aluminum and dolomite addi-
tion at LFs, shown in Table 2.

The Model: Blending the Weighted K-Nearest Neighbors, 
the Metallurgical Model and the Optimization Algorithm — 
The block diagram shown in Fig. 3 highlights the core 
building blocks of the proposed on-line model. The 
on-line model will be executed on a level 2 computer 
in the LF control room, and will query information 
from the DAT DB for reading the chemical compo-
sition of each addition and target values of the slag 
chemical composition according to the context infor-
mation, i.e., the steel grade. In addition, the model 

Box and whiskers plot of the slag CaO content, slag Al2O3 content and slag 
BA4 at LF from heats data considered training and test sets.

Figure 2
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will query information from the Laboratory DB in 
order to obtain the initial slag chemical composition 
analysis. The final chemical composition analysis of 
slag and steel are used for adaption. From the Model 
DB, the model also accesses configuration parameters 
of the application itself such as input and output tags, 
training set, coefficients and reports. One human-
machine interface (HMI) allows the tuning and 
configuration of the model, while another one allows 
the operator see the results of the model and select 
between manual or automatic setup of aluminum and 
dolomite addition to the LF. In the model application, 
an acquisition submodule gather all the input infor-
mation, and transfer it to the calculation submodules 
wKNN, Mass Balance + Optimization and Adaption.

Regarding the model calculations, the sequence 
of calculation for the formula explanation will be 
followed. Let L be the number of labeled examples 
and k ≤ L be a fixed positive integer, and consider a 
feature vector x. A simple algorithm to estimate its 
corresponding outcome y consists of two steps:7

1. Find within the training set the k indices i1, 
…, ik are nearest, according to a given feature-
space metric, to the given x vector.

2. Calculate the estimated outcome y by the fol-
lowing average, weighted with the inverse of 
the distance between x and the stored feature 
vectors:

y

y

d x x d

d x x d

i

i
j

k

i
j

k

i

j

j

=
( ) +

( ) +

=

=

∑

∑
,

,

0
1

0
1

1

(Eq. 3)

where d(xi,x) is the distance 
between the two vectors in the 
feature space (for example the 
Euclidean distance), and d0 is 
a small constant offset used 
to avoid division by zero. The 
larger the d0, the larger the 
relative contribution of faraway 
points to the estimated out-
put. If d0 goes to infinity, the 
predicted output tends to the 
mean output over all training 
examples. In this work, d0 = 1 
and k = 7. The outcome y is 
a vector of two components: 
aluminum and dolomite ini-
tial approximations and the 

Table 2
Variables That Constitute the Input Vector for the wKNN

Group Variable

EAF/LF process variables

EAF No.

EAF tapped weight (t)

EAF final oxygen activity (ppm)

LF initial temperature (C)

LF slag target values

Target % CaO

Target % Al2O3

Target BA4

EAF tapping additions

Aluminum (kg)

Dolomite (kg)

Limestone (kg)

De-sulfurizing slag (kg)

FeMn MC (kg)

FeMn STD (kg)

FeSi Mn (kg)

LF slag chemical composition, 
first sample

%MgO

%CaO

%Al2O3

%SiO2

%MnO

%FeT

%P2O5

%S

%FeO+MnO

BA4

Block diagram of the proposed on-line model.

Figure 3
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feature vector x is constituted by the 24 components 
listed in Table 2.

The tapping additions are responsible for the initial 
slag formation in the LF. The proportion of oxides 
will depend on both the chemical composition of such 
tapping additions and the amount of it. The chemical 
composition of these additions and their yield are 
known. However, there are elements such as alumi-
num and manganese whose yields do not remain con-
stant during the refining process, and for that reason 
it is necessary to calculate the yield to have a better 
accuracy of the slag oxides.

The Al2O3 mass produced by the aluminum addi-
tion is calculated as: 

Al Al O
Al Al Al Al

Mass

addition chemical yield Al O
_ 2 3

100
2 3=

∗( )∗ −( )∗

110 000,

(Eq. 4)

Dolomite and limestone have the ability to promote 
CaO, Al2O3, SiO2 and FeO oxides to the slag given 
its chemical composition. The following equation 
can be applied for the calculation of the MgO weight 
contribution by the addition of dolomite, and can be 
extended to the other elements weight contributions 
due to the oxides.

Dolomite
Dolomite Dolomite

MgO

addition chemical

Mass

MgO=
∗

100

(Eq. 5)

The synthetic slag used counts with the following 
oxides and elements within its chemical composition: 
CaO, MgO, SiO2, Al2O3 and Al. The weights of the 
oxides can be calculated using the following equation, 
which is expressed for the MgO mass calculation, and 
in the case of aluminum it must be multiplied by the 
aluminum capacity of become Al2O3, which usually 
uses 1.89 as a factor.

RSR
RSR RSR

MgO

addition chemical

Mass

MgO=
∗

100

(Eq. 6)

FeMn MC, FeMn STD and FeSi Mn have in their 
chemical composition Mn and Si. The estimation of 
the mass of oxide produced by both elements is influ-
enced by the yield and the ability to become oxides. 
The weight is generally estimated using the following 
equation:

FeMn FeMn
FeMn

Yield

MnO addition
chemical

Mass

MnO= ∗

∗ −( )
10 000

100
,

∗∗ Mn toMnO_

 (Eq. 7)

Slag mass of each oxide, due to the tapping addi-
tions, can be calculated as extension of the following 
formula for MgO mass:

MgO Dolomite Limestone

RSR FeMn
Mass MgO

MgO MgO

total Mass

Mass M

= +

+ +
aass Mass Mass

FeMnSTD FeSiMgO MgO+ +

(Eq. 8)

The total slag mass is the sum of the mass of all the 
oxides produced by the tapping additions:

Slag CaO MgO

MnO Al O
Mass Mass Mass

Mass

total total total

total

= +

+ + 2 3MMass Mass Masstotal total total
SiO FeO+ +

(Eq. 9)

However, these percentages will differ somewhat 
with respect to the initial chemical analyzes of the 
slag. This is because the exact amount of eccentric 
bottom tapping (EBT) sand pass and EAF carryover 
slag to the LF are not known. This difference in mass 
will cause a difference in the percentages of estimated 
oxides.

The EBT sand pass will initially be set at 70 kg, and 
knowing the chemical composition will serve later as 
a learning factor or model adjustment factor.

There are several ways to estimate the theoreti-
cal carryover slag by means of the oxides (Al2O3, 
SiO2, P2O5 and CaO). The calculations and tests 
performed showed that the balance with the amount 
of phosphorus pentoxide (P2O5) that existed showed 
the most consistent results. The tapping additions do 
not promote the formation of P2O5 in the LF and for 
this reason the mass of P2O5 present in the slag of 
the LF corresponds to P2O5 remaining from the EAF. 
Therefore, the P2O5 content in the EAF slag is known 
and, consequently, the P2O5 in the first sample of the 
LF’s slag. Additionally, the slag mass can be estimated 
based on the tapping additions, so it is possible calcu-
late the P2O5 present in the LF slag and the theoreti-
cal carryover slag based on the P2O5.

http://www.aist.org
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Mass
Slag Slag

P O P O

P O

Mass Masstotal EBT

LF

2 5 1 1

2 5 2 5

=
− +( )






−

% %
EEAF








∗100

(Eq. 10)

Slag
Mass

P Ocarryover
P O

EAFtoLF
EAF

=
∗

2 5
100

2 5

 (Eq. 11)

The total slag mass is calculated as:

Slag Slag Slagtotal Mass carryovertotal EAFtoLF
= +

 (Eq. 12)

Using the aluminum initial addition calculated by 
the wKNN through Eq. 3, Al2O3 mass contribution to 
the LF slag is:

Al Al O
Al Al Al Al

Mass

addition chemical yield Al O
_ 2 3

100
2 3=

∗( )∗ −( )∗

110 000,

 (Eq. 13)

Using the dolomite initial addition calculated by 
the wKNN through Eq. 3, CaO, MgO, SiO2, MnO 
and Al2O3 mass contributions to the LF slag can be 
Al2O3 with the following equation, extended to the 
mentioned oxides:

Dolomite CaO
Dolomite Chemical

Mass
CaO_

_=
100

(Eq. 14)

The weight of LF slag due to the wKNN initial addi-
tions is:

WeightSlag Al Dolomite Dolomiteaddition Al O CaO MgO
Mass Mass

= + +
2 3 MMass

Mass Mass Mass
Dolomite Dolomite DolomiteSiO MnO Al O+ + +

2 2 3

(Eq. 15)

The calculated chemical composition of the LF slag 
can be calculated using the following expression for 
the CaO, extended to the MgO, Al2O3, SiO2, MnO 
and FeO, as:

CaO
CaO

WeightSlagporc
Mass

addition
addition

total= ∗100

 (Eq. 16)

The quaternary basicity, BA4, is used as condition 
in the optimization algorithm of the model, and is 
calculated as:

B
CaO MgO

Al O
addition

porc porc

porc

addition addition

addit

4
2 3

=
+( )

iion addition
SiO porc+( )2

 (Eq. 17)

The optimization algorithm recalculates the slag 
chemical composition after changing the aluminum 
addition by a delta_Aluminum configurable in the 
Model DB. On each iteration, always check the BA4. 
Finally, this algorithm calculates the amount of dolo-
mite that constitutes the best solution in terms of 
adjustment of the slag chemical composition target 
values.

Results 

Training, Test and Validation Sets — The data set consists 
of information from 1,593 heats produced in two 
EAFs at Ternium Planta Guerrero. The distribution of 
the data is shown in Table 3. 

Results of the off-line evaluation of 30 heats from 
the validation set are presented in this paper (* indi-
cates this is a portion of the total validation set). The 
BA4, Al2O3 and CaO contents in the LF slags and the 
comparison between the target value, the real value 
and the model calculation are presented in Figs. 4–6.

In the previous three plots, the displayed Real 
data shows more dispersion from heat to heat than 
the Model data, because the additions were set by 
operational practice, without a model or an auto-
mated system. The Target data remains constant for 
the selected heats, and in the case of BA4 and Al2O3, 
Model data has less dispersion than Real data. In the 

Table 3
Data Set Distribution

Set EAF 1 # heats EAF 2 # heats Variables 

Complete 776 817 140

Training 465 490 24

Test 311 327 24

Validation* 30 30 24

http://www.aist.org
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case of the CaO, the Model data has more dispersion 
than Real data. This can be explained as follows: the 
optimization algorithm in the model adjusts the BA4 
changing the aluminum addition, so prioritize the 
BA4 and Al2O3 adjustment. Then, the calculation of 
dolomite addition to achieve the best result in terms 
of CaO, keeping BA4 tied to the target, through recal-
culation of slag chemical composition is carried out.

Table 4 shows a summary of results and expected 
benefits of the model for the validation set. Dispersion 

in Al2O3 is potentially improved by 46% while BA4 
can be improved by 39%. Dispersion in CaO is worst, 
by 92%. The total amount of aluminum proposed 
by the model for the 30 heats is less than the total 
amount of aluminum applied for those heats, and 
this can potentially lead to an improvement of 49% 
in consumption. In the case of dolomite, the model 
proposes major total addition than the applied, with 
a potential impact of –85% in the dolomite consump-
tion. Regarding costs, there is a potential saving of 

Results of BA4 in the LF slag.

Figure 4

Results of Al2O3 content in the LF slag. 

Figure 5
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US$0.41/ton if the model is used 
to set the aluminum and dolomite 
additions at the LFs, at the period 
of evaluation.

Conclusions

The wKNN algorithm is a robust 
machine-learning technique 
for solving problems with sever-
al uncertainties, as is the case 
of the meltshop. The proposed 
model, in simulations, performs 
better than the manual opera-
tion, adjusting the BA4 and Al2O3 
of the LF slag to the target val-
ues, with a low standard deviation. 
The CaO presents the worst dispersion, but the BA4 
is not compromised and in the worst case of the vali-
dation set, CaO was 2% lower than the target value, 
which is inside the plant tolerances. The proposed 
model can lead to a reasonable cost saving per ton of 
steel, due to the fact that helps reduce the aluminum 
additions during the slag conditioning stage. Future 
work includes the on-line test of the model with the 
adaption schema.

References

1.  E.B. Pretorius and R. Marr, “The Effect of Slag Modeling to Improve 
Steelmaking Processes,” Baker Refractories, Applications Technology 
Group, York, Pa., USA.

2.  B. Kailash and M. Vodeyar, “Optimization of Steel Production: Ladle 
Furnace Slag and Caster Productivity,” McGill University, 2012.

3.  E.B. Pretorius, “Fundamentals of EAF and Ladle Slags and Ladle 
Refining Principles,” Baker Refractories, Applications Technology 
Group, York, Pa., USA.

4.  A. Senguttuvan and G. Irons, “Modeling of Slag Entrainment and 
Interfacial Mass Transfer in Gas Stirred Ladles,” ISIJ International, 
Vol. 57, No. 11, 2017.

5.  O.Y. Sheshukov, I. Nerkasov, M.A. Mikheenkov, D.K. Egiazaryan, 
A. Sivtsov, V.P. Chencov and G.E. Gertsberg, “Unit Ladle-Furnace: 
Slag Forming Conditions and Stabilization,” S.O. Yurievich, ed., 
International Conference With Elements of School for Young 
Scientists on Recycling and Utilization of Technogenic Formations 
(TECHNOGEN-2017), Russia, 2017, pp. 70–75.

6.  M. Valdez, C. Cicutti, R. Ares and A. Gómez, “Estimation of the 
Composition of LF Slag in SIDERAR,” CINI Report, 2002.

7.  R. Battiti and M. Brunato, “The LION Way: Machine Learning Plus 
Intelligent Optimization,” Version 3.0, LIONlab, University of Trento, 
Italy, December 2017.

8.  J.D. Anderson Jr., Introduction to Flight, McGraw-Hill, Columbus, 
Ohio, USA, 1978, p. 357. F

Results of CaO content in the LF slag.

Figure 6

Table 4
Results Summary

Item Model Real Improvement (%) Model costs Real costs

Total added Al (kg) 1,423.3 2,798.3 49 US$2,295.79  US$4,513.70 

Total added lime (kg) 8,379.5 4,519.4 –85 US$921.32  US$496.90 

STDV - Al2O3 0.826 1.520 46  

STDV - CaO 1.786 0.931 –92  

STDV - BA4 0.046 0.075 39  

Total    US$ 3,217.11 US$5,010.60 

Expected total savings US$1,793.49 

Expected savings    US$0.41/ton

Expected savings @1 heat, 140 t  US$57.86
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