
Digital Transformations
M

AY
 2

02
1 
I IR

ON
 &

 S
TE

EL
 T

EC
HN

OL
OG

Y 
I A

IS
T.

OR
G

40

Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Fully Automated Rating of Slab Segregation Images for 
Pipeline Steel on a Continuous Scale

For high-strength, low-alloy (HSLA) 
steel produced for pipelines, the 
centerline segregation of continu-
ously cast slabs is an important met-
ric of quality. In the current market, 
measurement of centerline segrega-
tion is done by comparison to refer-
ence images, by measurement of the 
fraction of surface area darkened by 
etching, or by measuring and count-
ing of darkened dots on etched 
surfaces. To remove sensitivity in 
these adjustments while balancing 
precision and understandability, 
this paper proposes a fully auto-
mated image analysis method based 
on industrially recommended dot 
measuring methods. A software pro-
totype using this method has been 
developed; since this method uses 
images of samples etched for other 
methods, the method has been test-
ed on thousands of samples.

Existing Visual Methods

Common methods for visually ana-
lyzing centerline segregation can be 
broken down into three categories: 
reference image comparison, dark 
area fraction and individual dark 
area measurement. Each of these 
methods can be executed manu-
ally by operators or automatically by 
image analysis, but the complexity 
of the process and quality of the 
measurements varies with the meth-
od of execution. For example, it is 
possible to do an area fraction anal-
ysis by hand, but it is very tedious 
and has questionable repeatability 
across operators, while image analy-
sis software can easily count light 
and dark pixels once the threshold 
for darkness is determined. The fol-
lowing outlines a few of the possible 
issues of each method and some that 
all methods have in common.

Reference image comparison 
methods, such as the work described 
by SMS group,1 require an operator 
or image analysis software to look 
at the sample segregation image, 
compare it to reference images and 
pick the closest reference image. 
The sample then gets the rating of 
the closest reference image. When 
executed by different operators, 
these methods can become subjec-
tive if the criteria for analysis are 
not clearly defined beforehand. For 
example, reference images tend to 
be homogeneous in their segrega-
tion across the width to be clear on 
the difference between classes, but 
centerline quality can vary across 
the width of the transverse cut and 
across individual samples. In order 
to choose the most similar reference 
image, it should be agreed upon 
whether to look at the quality of the 
centerline across the whole sample, 
to focus the worst section of a pre-
determined width, or to focus on 
the worst concentration of indica-
tions regardless of the sample area 
affected. Automated image analysis 
using image comparison methods 
have been used in the past, but the 
measurement of success tends to be 
based on agreement with the same 
method executed by one or more 
experienced operators, so the same 
subjectivity can be built into the 
implementation of an automated 
method.

Dark area fraction methods, like 
the work of Abraham et al.,2 require 
the operator or image analysis soft-
ware to measure the area of all 
dark indications and divide that by 
the total area being measured to 
obtain a dark area fraction. From 
this measured area fraction, a rating 
is determined. This type of method 
has a different set of issues: a large 
number of small indications can 
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have the same influence on the final rating as a small 
number of large indications, and a larger section size 
can wash out acute problems (assuming the worst sec-
tion’s rating is used as the final rating for the sample). 
A trivial example to demonstrate these two issues: 20 
indications that are 1 x 1 mm spread out across the 
sample contribute the same 20 mm2 to area fraction 
as a single indication that is 2 x 10 mm. On a 200-mm-
thick slab, if the slab is cut into 200-mm-wide sections 
(40,000 mm2), the 20 mm2 contribution would have 
20/40,000 = 050% impact on area fraction, while cut-
ting the sample into 400-mm-wide sections (80,000 
mm2) would make that same contribution have 025% 
impact on the section’s area percentage. While this 
seems obvious, more evenly distributed indications, 
like the ones seen in reference images, do not typi-
cally present this problem.

Individual dark area measurement techniques, like 
the work of Rapp,3 and that of Steel Institute VDEh,4 
also called “dot counting” methods, resolve most of 
the problems above, particularly when executed by 
automated image analysis software. These methods 
measure the dimensions of individual dark areas 
and group the indications by their size. Each method 
has a set of thresholds for the number of indications 
allowed in each size category for each final rating clas-
sification. The remaining issues are the thresholds 
between size classes and the thresholds to determine 
final rating class based on the number of indications 
in each size class. For example, both methods have 
four final rating classes. Both use a 10-mm threshold 
for entry into the worst class, but an unlimited num-
ber of 9-mm indications are allowed in the second-
worst class. The biggest differences between the two 
mentioned methods are the dimensions of the dark 
areas used to classify indications, and treatment of 
close but disconnected indications and thinly joined 
indications. The method of Steel Institute VDEh will 
be referred to several times in this paper as SEP 1611.

One of the issues that is common to all of the meth-
ods mentioned is the decision to include or exclude 
an indication based on its darkness relative to the sur-
roundings. Each analysis method handles this deci-
sion differently, having different wording or methods 
to decide that an indication is dark enough to be 
counted. While an operator executing two different 
methods might use a similar threshold for darkness, 
operator-to-operator differences in interpretation can 
be large, and attempting to follow the rules strictly or 
implementing the rules in an automated analysis can 
make a measurable difference between methods on 
the number and size of indications detected.

The last issue to discuss here is that of classifying 
samples into a small number of ratings. There is such 
a wide range of possibilities in each rating class that 
the difference between two samples in the same class 
can be far larger than the difference between samples 

in adjacent classes. This makes the measurement 
of improvement efforts based on these ratings very 
difficult.

Proposed Method 

In order to address these issues, the new method 
incorporates the following:

 • The influence of each indication is calculated 
based on the indication’s area and its outside 
diameter, with larger indications having more 
impact on final rating than the same area made 
up of smaller indications. Additional consider-
ation is included for the total length of center-
line covered by the sum of equivalent circular 
diameters. 

 • The method scans across the samples to find 
the worst 100-mm-wide window, regardless of 
section width. This only solves the size prob-
lem partially because a section cut through a 
large indication or batch of indications can still 
reduce the rating. The worst 100-mm window 
method is also used in the two referenced meth-
ods for individual dark area measuring.

 • To improve on the issue of a small change in 
indication size pushing the indication into 
another size category and possibly into another 
rating category, the indication measurements 
are used to calculate a rating without rounding 
or categorization. 

 • To improve the ability to compare between 
slabs of similar rating, the method uses a con-
tinuous rating scale.

 • To address the possibility of subjectivity between 
operators, the method is fully automated once 
the sample image is scanned.

The remainder of this section describes the rating 
process with an overview of the sample preparation, 
followed by details about the image adjustments and 
analysis done to make up the new rating method. 
Note that for all segregation images with grids over-
laid for size reference, the grid spacing is 5 mm.

Sample Preparation — Full-width, full-height samples 
are cut from the end of a continuously cast slab by an 
automated torch. The thickness of the sample (in the 
casting direction) must be sufficient to allow all torch 
heat effects to be removed in the machining step. The 
full-width samples are sent to a machine shop, where 
they are cut into pieces across the width so that they 
fit in the automated etching machine and on the scan-
ning bed, and to reduce the weight of the pieces for 
handling by operators. The pieces are then machined 
on one of the cut faces to remove all torch effects 

http://www.aist.org
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42 Digital Transformations

and make a smooth surface. Once the samples are 
returned from the machine shop, they are chemically 
etched to make the centerline segregation (which is 
somewhat different in chemistry than the surround-
ings) stand out.

Once the etching is complete, the sample is rinsed 
and then scanned, either by a flatbed scanner or a 
wand scanner. Images could also be acquired by a 
well-placed camera with well-controlled lighting, but 
it has been found that scanners give more consistent 
results because they contain their own well-controlled 
lighting and they reduce the possibility of geometric 
distortions that can arise from different camera set-
ups (either due to the shape of the optics or place-
ment relative to the sample). A very helpful feature of 
using a scanner to acquire images is that the dimen-
sions of the sample and the centerline indications can 
be measured on the image with acceptable accuracy 
by dividing the pixel dimensions by the pixel density 
(dots per unit length). To get accurate dimensions 
from a camera setup, measuring scales should be pho-
tographed on the sample.

Image Adjustment and Analysis — Most methods of 
visual centerline segregation analysis can be broken 
down into three main steps: detection of dark regions, 
measuring detected regions and calculating a rating. 
Each step should be analyzed very carefully before 
committing to the use of a given method. This sec-
tion discusses the details of the proposed method as 
it stands today, and a subsequent section outlines a 
sensitivity analysis done as a part of this study.

Fig. 1 shows the original image from a 341-mm-wide 
sample of a 254-mm-thick slab; the dark “fingers” on 
the top and bottom are the brackets that hold the sam-
ple above the scanner’s glass. The light-
ened rectangle across the center of the 
image is the 50-mm-high region normally 
considered for analysis. This height was 
chosen to ensure that the centerline was 
within the considered region if the sample 
was shifted up or down on the scanner 
bed. The width of the considered region 
is 98% of the sample width, which was 
chosen because there are often machin-
ing, etching or scanning anomalies out-
side this width on historical images. The 
smaller black rectangle of centerline, on 
the right side of the image, is a 100 x 
10 mm portion being shown through the 
detection process for this document.

Detection of Dark Regions — The detection 
of dark regions in the proposed method is 
accomplished using a combination of fil-
tering, contrast adjustment and threshold-
ing. This process is shown in Fig. 2. First, 

the red channel of the RGB (red, green and blue) 
scanned image is used because it is less sensitive to 
rust staining that can result if the sample is not dried 
soon enough after etching and rinsing. The red chan-
nel, now a grayscale image, is put through a band pass 
filter to remove noise and very small indications on 
the high-frequency side and to remove etching varia-
tion across the sample on the low-frequency side. The 
frequency cutoffs of the band pass filter are adjusted 
based on the image’s pixel density (dots per millime-
ter), which helps to reduce the differences that can 
arise from different scanning settings. The filtered 

Original sample image used to demonstrate proposed method, 
with the 50-mm-high considered region lightened and a 
10 x 100 mm region for further analysis shown with a black 
rectangle.

Figure 1

Progress from original image to detection output on 100 x 10 mm portion 
of sample image.

Figure 2
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image is then adjusted so that the median brightness 
is at 75%, and the darkness relative to the median is 
scaled based on the difference between the 40th and 
60th percentile brightness. This makes the areas that 
are much darker than the background stand out and 
provides the ability to threshold the image based on 
a fixed number.

Measuring Detected Regions — The measurement of 
detected dark regions is done on the detection out-
put. The measurements available include bounding 
rectangle, bounding circle, bounding ellipse and 
equivalent circular area. Fig. 3 shows the rectangular 
and circular measurements of the detection output 
for comparison.

Calculating a Rating — Once the indications in the 
considered region are measured, some strange indi-
cations are removed; for example, thin vertical indi-
cations near the left or right edge of the image are 
considered etching artifacts. These detected artifacts 
are drawn on the output image as purple rectangles 
and saved with the detection details. With the remain-
ing indications that have equivalent diameter of at 
least 1 mm, Eq. 1 is used to calculate the rating for the 
indications in a 100-mm window:

a r r a
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aa e b
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p
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c c

o
a

p
o

π( ) + 











+∑∑

(Eq. 1)

where

re and de = the radius and diameter of the equivalent 
area circle (in mm),

rb = the radius of the bounding circle (in mm) and 
w = the window width (in mm). 

This equation can be broken into two main parts: 
the portion from aa to ca is the contribution from 
individual circles (equivalent to multiplying the area 
of each indication by its ratio of outside diameter to 
equivalent diameter), and the portion from ap to cp 
is the contribution from the sum of equivalent diam-
eters divided by the width of the sample (which is the 
percentage of width covered by equivalent circles laid 
end to end). The tuning coefficients aa, ca , ap, cp, at 
and ct are used to shape the output to meet the goals 
of the project. Some details on the goals and on how 
this equation reacts to different inputs are in the next 
section.

Finding the Worst 100 mm — A 100-mm 
window is shifted from left to right across 
the image in 1-mm increments. For each 
1-mm step, the indications whose cen-
troids are within the 100-mm window 
are used to calculate the rating for that 
step using Eq. 1. Once all of the steps 
are complete, the software has ratings in 
1-mm increments, centered from 50 mm 
from the left to 50 mm from the right of 
the considered region. From these ratings, 
the worst is selected and the rating for this 
region becomes the rating for the sample.

Marking Up the Image — Finally, after mea-
surement is complete, an output image is 
created showing the measured indications, 
with the worst 100-mm portion highlight-
ed, and some metrics and a final rating for 

Measurements for calculating rating based on size of indications, applied 
to the detection output from Fig. 2. Grid with 5-mm spacing added for 
reference.

Figure 3

Marked-up image for the considered region of Fig. 1, showing the rating for the worst 100-mm area.

Figure 4

http://www.aist.org
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44 Digital Transformations

that 100-mm portion. The number 
above each indication’s bounding 
circle is the equivalent diameter, and 
the number below each indication’s 
bounding circle is the bounding 
circle diameter, both in millimeters. 
This image is shown in Fig. 4.

Calculation Analysis

Eq. 1 was developed with three goals: 
(i) to make a rating that increases 
with indication area and with out-
side diameter so that a small number 
of large or long indications gives a 
high rating; (ii) to make the rating 
increase with centerline coverage 
percentage so a large number of 
small indications also gives a high 
rating; and (iii) to scale the final rat-
ing to ensure the reference images 
from SEP 1611 rated at least their 
reference level of 1, 2, 3 or 4, to 
make the resulting rating compara-
ble to other methods of segregation 
image analysis.

To show how the equation meets 
goals (i) and (ii), Fig. 5a illustrates 
the relationship between the diam-
eter ratio and fractional rating for 
a single indication of different sizes. 

Fractional rating vs. diameter ratio for single indications and for multiple 
indications (a) vs. number of indications for increasing equivalent diameter (up to 
8-mm equivalent diameter shown) (b).

Figure 5

(a)

(b)

Charts showing the indication sizes (a) and counts for randomly generated sets used to test the rating equation (b).

Figure 6

(a) (b)
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This shows that a single indication of the smallest con-
sidered size (1-mm equivalent diameter with diameter 
ratio of 1.0) gives a fractional rating 0, and also shows 
that a single indication can take the fractional rating 
well above 4.0 as the combination of equivalent diam-
eter and diameter ratio increases. Fig. 5a shows the 
increase in fractional rating with the number of indi-
cations of a given size (assuming identically sized indi-
cations for simplicity). This chart was generated with 
a diameter ratio of 1.25, so the first column of labels 
(for a single indication of the given size) matches the 
column of labels at diameter ratio 1.25 in Fig. 5a.

To demonstrate the ratings that arise from Eq. 1 on 
a wider range of inputs, 500 sets of indications were 
generated, each with between 1 and 25 indications, 

with each indication having random equivalent diam-
eter between 1 and 9 mm and random outside to 
equivalent diameter ratio between 1.0 and 2.7. Fig. 6 
shows a scatterplot of diameter ratio versus equivalent 
diameter for the individual indications, and a histo-
gram of the number of indications in each set. These 
sets of indications were counted with the proposed 
method as well as the counting method outlined in 
SEP 1611.

Fig. 7 shows the relationships between fractional 
rating and four other metrics. Squares labeled A 
through E are the ratings for five randomly selected 
sets of indications that can be used to compare what 
makes a rating between the charts; for example, D 
has only slightly higher rating than C, even though 

Charts showing the relationship between fractional rating and other metrics for randomly generated sets of randomly sized 
indications.

Figure 7

http://www.aist.org
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D has 10% more centerline coverage and 
a higher number of indications. This is 
explained by C having a higher maximum 
outside diameter.

Finally, to illustrate how the equation 
meets goal (iii), Fig. 8 shows the distribu-
tion of fractional ratings for the same 
500 sets of random indications used for 
Fig. 6 and 7, but grouped by the discrete 
rating found using the counting method 
of SEP 1611. Near the top of the chart, 
there are four X markers labeled with 

“Ref 1” through “Ref 4” showing where 
the reference images from SEP 1611 were 
measured on the fractional scale using 
the proposed method. When the same 
measured indications were counted using 
SEP 1611, the images fell into the cor-
rect classes of 1, 2, 3, and 4, while using 
the proposed equation put their frac-
tional rating at 1.62, 3.16, 4.03 and 5.19, 
respectively.

Example Results 

To demonstrate varying levels of detect-
ed segregation, spanning the fractional 
range from 0.5 to over 3.0, 12 images were 
selected with fractional rating increasing 
by approximately 0.25 per image, and 
the worst 100-mm-wide area, cropped to 
20 mm tall for each image is shown in 
Fig. 9, with the original image on the left 
and the measurements overlaid on the 
filtered image on the right.

Sensitivity Analysis 

When dealing with sample images taken 
over several years, there can be image 
quality variation due to equipment and 
practice changes. In order to test the 
effect of image quality parameters on the 
analysis results, four experiments were 
done: three were done on the level of 
individual indication measurements to 
determine the effects of image resolution 
and compression, height above the scan-
ner platen, and common image adjust-
ments; the fourth experiment determined 
the effects of common image adjustments 
on the rating of several samples. Note 
that for the images of measured seg-
regation in this section, the equivalent 
diameter circle is not drawn so that the 

The distribution of fractional ratings for randomly generated sets of 
randomly sized indications, grouped by the four discrete rating classes of 
SEP 1611.

Figure 8

Worst 20 x 100-mm portions of 12 samples with increasing fractional rating.

Figure 9
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effects of adjustments on indication representation 
can be examined. As with the previous output images, 
the number above the indication’s outer circle is its 
equivalent circular diameter, and the number below 
the indication’s outer circle is its bounding diameter.

Effects of Image Resolution and Compression — In order 
to test the effect of changing the image resolution 
(dots per unit length of sample) and software image 
compression on the analysis results, a 20 x 25-mm 
portion of a segregation sample with some noticeable 
indications was scanned multiple times on a non-
production flatbed photo scanner with pixel density 
between 50 and 1,200 dots per inch (dpi) (between 2 
and 47 dots per mm), and saved in an uncompressed 
TIFF file. These files were each converted to multiple 
JPEG-compressed images with increasing compres-
sion levels from 0% to 75%. Each image was then 
processed through the detection and measuring 
algorithm. After measuring, but before annotating, 
the images were resized up or down to 300 dpi so that 
they could be shown together in a grid with the same 
font size.

Fig. 10 shows that the effects of changing resolu-
tion and image compression on detection output is 
quite small for resolutions at or above 300 dpi (11.81 
dots per mm). At lower resolutions, the big detected 
indication on the right was split into two for some 
or all compression settings. Looking at the shape of 
that indication and these results, a decision should be 
made whether to split thinly connected indications or 
merge close indications, as has been done in the other 
referenced dot counting methods.

Effects of Height Above Scanner — Because flatbed scan-
ners used have a glass surface through which the sam-
ple is scanned, metal spacers are often used to keep 
the steel sample from touching the surface and dam-
aging the glass. As the distance from the glass surface 
increases, the scanned image is affected in two ways: 
the light becomes more diffused and the focus of the 
scanner is reduced. Because the analysis is not looking 
for microscopic indications, both of these effects in 
small quantities can make it easier to distinguish dark 
areas from the noise around them, but the effects on 
detection should be quantified. Using metal shims 
of increasing thickness, the height above the glass 

Effects of image resolution and compression ratio on detection of indications. The numbers in parentheses are the JPEG 
compression levels in percent.

Figure 10
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48 Digital Transformations

surface was increased and a similar area of indica-
tions measured in Fig. 11 was scanned into a 1,200 
dpi TIFF file. The results of running these images 
through the detection and measuring algorithm are 
shown in Fig. 11. The images scanned for Fig. 10 were 
scanned at 2.5 mm above the glass because that was 

the distance when the sample was bridged across the 
scanner’s frame. To get down to 0.5 mm for Fig. 11, 
very careful handling was necessary to preserve the 
scanner’s glass. Fig. 11 shows that the effects of height 
above the scanner on measurements are small until 
the distance exceeds 12.5 mm, when the small indi-
cations start to disappear and the large indication is 
detected as two smaller indications. 

Effects of Image Adjustments on Detection Output — In 
order to test the effects of image adjustments on 
the detection of individual indications, 33 different 
adjustments were made on detected indication size for 
two small images: one taken from the previous analy-
sis step where height above glass was 8.2 mm (resized 
to 300 dpi), and the other taken from a historical 
sample image that had some noticeable indications. 
The first column has five images made with some 
available adjustments of image quality: multiplying 
the image by itself (each pixel’s red, green and blue 
values on a scale from zero to one are squared), add-
ing noise to the image, and three different types of 
automatic adjustments. Two levels of blurring and two 
levels of sharpening adjustments are arranged in the 
second column on either side of the original image. 
The 24 remaining adjustments (columns 3 through 7) 
are brightness and contrast adjustments arranged so 

Effects of sample height above scanner glass surface  
(z dimension) on the detection of indications.

Figure 11

Effects of image adjustments on detection of indications for an image from previous analysis step.

Figure 12
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going from left to right shows the contrast adjustments 
and top to bottom shows the brightness adjustments.

Fig. 12, which displays the adjustments on the image 
used for the center of Fig. 11, shows that the largest 
effects of adjustments come from large amounts con-
trast and brightness together, where the background 
pixels start to be detected. Some of the other adjust-
ments including sharpening and adding noise caused 
the same splitting of the large indication that was 
seen in the previous analysis steps. Fig. 13, which is 
from a historical sample scanned on EVRAZ Regina’s 
production scanner setup with production settings, is 
less sensitive to the same set of adjustments.

Effects of Image Adjustments on Ratings — In order to 
test the effect of image adjustments on the proposed 
method including rating, 21 samples with fractional 
rating between 0 and 4.0 were put through the pro-
posed method to extract the worst 50-mm-high by 
100-mm-wide area. Each 50 x 100 mm image portion 
was adjusted for all possible combinations of bright-
ness, contrast and blur/sharpen used in the previous 
analysis step plus the five other adjustments, giving 
a total of 129 adjustments. The 2,730 resulting imag-
es (including one per sample with no adjustments 
where all three adjustment levels were zero) were 
run through the analysis to measure their fractional 

rating. Fig. 14 shows the change in fractional rating 
vs. the rating for the unadjusted sample, the change 
in fractional rating vs. the amount of blur/sharp-
en, brightness or contrast adjustment, with separate 
markers for that change alone, and the histogram of 
change in fractional rating.

Table 1 shows the percentage of samples within 
a given rating amount of the unadjusted image. 
Reviewing the examples where the rating changed 
by more than 1.0 (35 of 2,709 adjustments): 32 of 
them had very high brightness adjustments (+50% 
or –50%), two were from the automatic brightness 
adjustment, and the last one was from multiplying 
the image by itself. The adjustments where the rating 
increased dramatically tended to be where the back-
ground noise started to be detected as segregation. As 
shown in the charts on the right of Fig. 14, the biggest 
changes in rating came from combinations of +50% 
contrast, +50% brightness, with varying amounts of 
blur/sharpen. This is the same effect seen at the bot-
tom right of Fig. 12.

Next Steps

The prototype implementation of this method was 
developed using the Wolfram Language and runs in 

Effects of image adjustments on detection of indications on an image from a historical sample.

Figure 13
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50 Digital Transformations

Effects of image adjustments on fractional rating for 21 images.

Figure 14

Table 1
Percentage of Image Adjustment Effects Within Increasing Amounts of the Original Rating

Adjusted rating All adjustments Only blur/sharpen Only brightness Only contrast

Number of samples 2,709 84 84 84

Within 0.1 62.6% 79.8% 67.9% 70.2%

Within 0.2 79.0% 84.5% 81.0% 83.3%

Within 0.5 95.1% 98.8% 96.4% 97.6%

Within 1.0 98.7% 100% 98.8% 100%

http://www.aist.org
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Wolfram Mathematica.5 In order to allow integration 
with third-party automation systems, the production 
version of this method will use a wrapper application, 
and that application will call the Wolfram Language 
algorithm to run the analysis.

Due to some remaining effect on ratings found 
during the sensitivity analysis, there should be some 
work done toward standardizing some aspects of 
preparation and etching of samples and the acqui-
sition of image in order to make this or any other 
analysis method comparable across steel producers of 
similar products. A decision on what to do with thinly 
connected and very close indications should be made 
for the proposed method. Detection of some types of 
adjustments should also be possible using automated 
image analysis. These will be the topic of a future 
paper.

Another future topic should be a comparison 
between ratings generated by as many automated 
methods as possible on anonymized samples from 
as many continuous casters as possible. The analysis 
should include some sensitivity analysis to effects like 
image adjustment and etching parameters. This will 
require some collaboration between steel manufac-
turers, but it will give consumers some confidence in 
switching between methods once they understand the 
differences in results.

Conclusions

An innovative method has been developed using 
image analysis software to address many of the prob-
lems presented when quantifying centerline segrega-
tion from scanned images of etched steel samples. 
The method removes subjectivity from the process 
by automating the detection and measuring once 
the scanned image is presented and it is robust with 
respect to some levels of image adjustments and varia-
tions in image quality. The method measures on a 
continuous scale to improve process understanding 
and to allow smaller improvements to be quantified. 
The output of the method has been scaled such that 
the ratings may be considered on a comparable scale 
to other methods being used in the steel industry. 
Some further analysis is required before this method 
can be used across the industry.

Acknowledgments 

The authors wish to thank Brad Forster and the 
EVRAZ Regina Management team for the opportuni-
ty to prepare the analysis method and this paper about 
the method. The EVRAZ Regina Technical Services 
Team is also acknowledged for their input into the 
quality and accuracy of this method and for their 
knowledge of other analysis methods. Thanks also 
go to Josef Watzinger from Primetals Technologies 
Austria GmbH for introducing the authors to SEP 
1611.

References

1.  SMS group, “Classification of Defects in Materials – Standard Charts 
and Sample Guide,” SN960, October 2011.

2.  S. Abraham, J. Cottrell, J. Raines, Y. Wang, R. Bodnar, S. Wilder, 
J. Thomas and J. Peters, “Development of an Image Analysis 
Technique for Quantitative Evaluation of Centerline Segregation in 
As-Cast Products,” AISTech 2016 Conference Proceedings, 2016.

3.  S. Rapp, “Requirements of the MAOP Rule and Its Implications to 
Pipe Procurement,” INGAA Foundation Best Practices in Line Pipe 
Procurement and Manufacturing Workshop, Houston, Texas, USA, 
June 2010.

4.  “ Evaluation of Centerline Segregation of Continuously Cast Slabs,” 
SEP 1611, Steel Institute VDEh, Düsseldorf, Germany, October 2018.

5.  Wolfram Research Inc., Mathematica, Version 12.0, Champaign, Ill., 
USA, 2019. F

This paper was published in the AISTech 2020 Conference Proceedings. 
AIST members can access the AISTech 2020 Conference Proceedings in the 
AIST Digital Library at digital.library.aist.org.

http://www.aist.org

