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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Improved Prediction of Steel Hardness Through Neural 
Network Regression

Product hardness number is a vital 
input for finishing mill setup mod-
els in the calculation of load, torque 
and power in a hot strip mill. It is 
based on steel grade, whose value 
is updated from mill feedback. The 
goal of this work is to improve hard-
ness prediction even if the steel 
grade is new to the hot mill. To do 
so, a robust neural network–based 
hardness prediction algorithm is 
proposed that inputs statistically 
significant features such as chem-
istry composition, aim gauge, aim 
width, rolling temperature and fin-
ishing temperature. Ultimately, this 
approach achieves mean absolute 
error below 2.1%, which substan-
tially outperforms the baseline error 
of 2.75%.

Predictive Models for Finishing Mill 

Within the finishing mills and hot 
rolling processes, hardness is a steel 
property of great significance that 
is influenced by factors such as tem-
perature1 and its chemical compo-
sition.2 Having the ability to pre-
dict qualities such as hardness can 
be highly beneficial in the design 
of new products and for analyzing 
rolling schedules for schedule con-
solidation. Researchers have previ-
ously sought similar efforts in hot 
mill operation, such as prediction of 
coiling temperature3 and detection 
of surface defects.4

In recent years, a variety of new 
mill technology has been made avail-
able to aid in similar processes such 
as inspecting the surfaces of rolls5 
and producing thinner roll strips.6 
The vast focus of such technological 
advancements, however, lies with-
in the emergence of Industry 4.0. 
Industry 4.0 brings about a plethora 
of new technologies and industrial 

concepts for the steel industry to 
explore and bring to new and exist-
ing processes. For instance, a tech-
nology known as condition-based 
monitoring7 uses mill data to moni-
tor the various conditions of pro-
cesses and alerts operators when 
something is running outside of a 
normal set of constraints, such as 
anomalies in the pipeline or main-
tenance and safety needs. 

An increasingly vital category of 
industrial technology lies within 
artificial intelligence (AI), or more 
specifically the subset of AI known 
as machine learning (ML). A variety 
of ML techniques have been applied 
to different steel applications so 
far, such as image processing for 
detection of surface defects using 
convolutional neural networks8 and 
the use of knowledge discovery from 
data (KDD) to form an entire data 
processing pipeline for predictive or 
explanatory models.9 Other meth-
ods include the use of self-organiz-
ing maps (SOMs) for the discovery 
of disuniformities10 as well as sup-
port vector machines (SVMs) for 
temperature prediction.11

Overview of Neural Network 

This paper presents a feedforward 
artificial neural network (ANN) to 
predict product hardness given a 
variety of inputs, as illustrated in 
Fig. 1. The inputs are a combina-
tion of chemistry composition, such 
as carbon, manganese and phos-
phorus, and non-chemistry features, 
such as aim gauge, aim width and 
temperature hardness. The product 
hardness is the sole output. 

To determine an accurate ML 
model for hardness prediction, a 
supervised learning approach is 
employed using a feedforward ANN. 
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In supervised learning, data samples are shuffled and 
separated into training and validation data, each of 
which comprises the two different stages of the ML 
process. In the training stage, the inputs and outputs 
of the training data are given, and through iterative 
training the weight variables in the ANN equations 
are continuously updated until the percent error 
between the actual outputs and the predicted outputs 
are below a certain threshold. 

In the validation stage, the weights are set to those 
determined at the end of the training stage, and only 

the inputs of the validation data are given. This is to 
verify that the neural network model can make accu-
rate predictions without the outputs being known. 
This will be particularly useful if the algorithm is 
implemented into a real-time system in which the 
product hardness must be predicted before the actual 
value is known.

Fig. 2 provides the overall supervised learning pro-
cess in terms of training and validation.

Upon the formation of this approach, the next 
challenge lies within deciding how to partition the 

Black box diagram of inputs and output for artificial neural network (ANN).

Figure 1

Overview of the supervised learning process.

Figure 2
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training and validation stages. Because the goal of 
this research is to predict product hardness even when 
the steel grade is new to the hot mill, it was decided 
that the most ideal approach is to use data samples 
with known steel grades as the training data and 
those with unknown grades as the validation data.

Next, the rest of the experimental parameters must 
be determined, the two most crucial of which are the 
ANN training method and the activation function. 
The training function is the algorithm that sets the 
weights to values that determine the best accuracy, 
while the activation function determines whether to 
activate certain neurons in the ANN based on the 
relevance of a neuron’s input in determining an accu-
rate output.

This work employs three different training meth-
ods and two activation functions. The training algo-
rithms selected for experimentation are limited- 
memory Broyden-Fletcher-Goldfarb-Shanno algo-
rithm (L-BFGS), stochastic gradient descent (SGD), 
and a variation of SGD known as adaptive moment 
estimation (Adam), while the activation functions are 
sigmoid and rectified linear unit (ReLU). 

Grade-Based Clustering 

To further enhance hardness prediction accuracy, a 
clustering portion was added to the overall prediction 
process. Clustering is a form of unsupervised machine 
learning in which outputs are predicted based on 
patterns in the input data, rather than by training of 
some prior data. Here, clustering is used to separate 
data samples based on the characteristics of different 
steel grades. By isolating different sets of data into 
ones with either a single steel grade or multiple simi-
lar steel grades, ideally, more accurate weights can be 
obtained by having a more focused data set, thereby 
forming more meaningful and more accurate hard-
ness predictions.

In this approach, K-means clustering is used, which 
partitions data samples into K clusters with the closest 
mean. In this approach, the full data set (including 
known and unknown steel grades) is taken, dimen-
sionality reduction applied via principal component 
analysis (PCA), and then the K-means clustering 
algorithm is applied with a pre-determined number 
of clusters. From there, each cluster is a separate data 
set to be used in its own supervised learning process, 
again with the known steel grades as training and the 
unknown grades as validation. This way, each cluster 
has an ANN whose weights are dependent on the 
given steel grades.

In this research, the ANN is evaluated in terms of 
both clustered and unclustered data.

Initial Neural Network Results

To thoroughly verify the effectiveness of the hardness 
prediction algorithms, the neural network was tested 
under a variety of experimental parameters. These 
include:

	 •	ANN training technique.
	 •	Activation function.
	 •	Training versus validation.
	 •	Number of clusters.

To evaluate the effectiveness of the methods used 
in this study, mean absolute error is used, which is 
defined as:

Error = 100 × |yactual – ypredicted| / yactual

averaged across all data samples for either the train-
ing set or the validation set, depending on the type 
of accuracy being determined. Based on efforts in 
the authors’ prior work, the baseline error that was 
intended to undercut is 2.75%. Table 1 presents the 
ANN results for each combination of training method 
and activation function in terms of training and vali-
dation accuracy.

As the results in the table indicate, for the training 
accuracy, L-BGFS produces the lowest error while 
SGD performs the worst, and the difference in results 
between activation functions is negligible. However, 
under validation error, a combination of sigmoid and 
SGD provides the best results. While this corresponds 
to the highest training error, that is less relevant, as 
a relatively minor difference between error values 
is preferred in supervised learning. In the case of 
L-BFGS and ReLU, the smallest training error comes 
at the expense of one of the highest validation error 
values. This is most likely due to overfitting, in which 
the data (known steel grades) is trained too well, with 
an insufficient amount of validation data (unknown 
grades) to replicate similar results in the validation 
stage. Due to the overall success of SGD and sigmoid, 
this training method and activation function will be 

Table 1
Overview of Training and Validation Error for Each 
Combination of Training Method and Activation Function

Training error (%) Validation error (%)

Sigmoid ReLU Sigmoid ReLU

L-BFGS 1.92 1.92 3.43 6.42

SGD 2.58 2.58 2.91 16.30

Adam 2.32 1.68 4.99 3.65
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exclusively used for the remainder of the experimen-
tal results.

Figs. 3–5 provide the results under varying num-
bers of clusters, as described in the previous section. 
To provide a more thorough picture of how clustering 
affects the accuracy results, three different sequences 
of cluster amounts are used, ranging from coarse 
(varying by 20) in Fig. 3 to medium (varying by 10) in 
Fig. 4 to fine (varying by 1) in Fig. 5.

Fig. 3 plots the training and validation error versus 
the number of clusters. As it can be seen, the train-
ing error has little variation between cluster amounts, 
ranging from 1.8 to 1.9% the entire time. The valida-
tion error, however, has a clear minimum at 60 clus-
ters with 1.9%, while most other clusters have error 
ranging from 2.1 to 2.2%. Fig. 4 provides a similar 
plot but with clusters varying by 10 instead of 20 (i.e., 
medium tuning rather than coarse tuning).

In this case, the training error retains similar val-
ues, while in the validation error, there is a global 
minimum of 40 clusters with less than 1.8% error as 
well as a local minimum at 20 clusters. It is worth not-
ing that the values at 20 and 40 differ somewhat from 
those in the previous figure. However, by applying a 
margin of error of 0.4%, better consistency can be 
achieved. However, once doing so, all values in Fig. 3 
are now within the margin of error, thereby leaving 
the use of clusters as statistically insignificant in terms 
of improving accuracy. Luckily, this is not the case in 
Fig. 4, as 1 and 50 clusters are essentially the outliers. 
Lastly, one additional plot provides results under fine 
tuning of the number of clusters.

In this case, the training error still holds steady, hov-
ering around 2.2%. The number of clusters appears to 
be optimized at 3.0, with all other values rising as high 
as 2.8%. In addition, all cluster amounts except 1 are 

within the margin of error. When analyzing all three 
plots overall, it can be found that the separating dif-
ferent steel grades into clusters of an amount between 
1 and 40 does in fact improve prediction accuracy. 
However, more experimental parameters can still be 
explored to achieve the optimal hardness prediction 
accuracy.

Feature Selection 

Upon initial interpretation of the results, a key obser-
vation to consider is that with a total of 21 inputs, or 
features being fed into the ANN, it must be considered 

Plot of accuracy vs. number of clusters in increments of 20 
clusters.

Figure 3

Plot of accuracy versus number of clusters in increments of 
10 clusters.

Figure 4

Plot of accuracy versus number of clusters in increments of 
one cluster.

Figure 5
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whether every feature is actually useful in obtaining 
an accurate hardness prediction. Furthermore, in the 
case of features that are beneficial, which ones are 
more crucial than others? This is the case in which 
the concept of feature selection becomes of vital 
importance.

Feature selection is the process of selecting a partic-
ular set of inputs that has the most relevance in deter-
mining the output. Essentially, the features with the 
highest amount of correlation with the output are of 
interest. To determine such an optimal set of features, 
there are three possible ways to achieve this. One is 
a filter method, in which statistical processes can be 
applied to filter the features that pass a certain thresh-
old before moving on to the ML process. Another is a 
wrapper method, in which the ML process is executed 
repeatedly with multiple different combinations of 
features. A third approach is an embedded method, 
in which the optimal subset of features is determined 
while the ML process is executed.

In this case, the filter method was selected, in which 
the correlation coefficient between each feature and 
the output hardness are used to determine the rel-
evance of said feature. The correlation coefficient is 
defined as the covariance between a feature and the 
output divided by the product of the standard devia-
tion of each. Fig. 6 provides the correlation results for 
each feature.

In this figure, each feature can be classified into 
four groups: great correlation, denoted by green in 
which the coefficient exceeds 0.5; good correlation, 
of 0.3–0.5 range in yellow; fair correlation, of 0.1–0.3 
range in orange, and poor correlation, denoted by red 
in which the coefficient is below 0.1. In many other 
applications, the standards for good correlation are 
typically much higher, such as 0.8 or 0.9, but in this 
case, the features evaluated relative to one another 
rather than on a fixed scale. 

This relative analysis only shows features that meet 
the top threshold and all happen to be chemistry-
based, which are carbon, manganese, sulfur and 

Comparison of correlation coefficients for each available feature.

Figure 6
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silicon. The next highest tier is also entirely chemistry- 
based, containing aluminum, titanium, niobium, 
nitrogen and molybdenum. The fair tier has only one 
non-chemistry-based feature, which is aim width. The 
other features are phosphorus, nickel and chromium. 
Finally, the lowest tier contains only one chemistry-
based feature (boron) and all non-chemistry-based 
ones except for aim width. Thus, overall, it can be 
concluded that chemistry composition in general has 
the strongest correlation with product hardness.

Because none of the features have a correlation 
that exceeds 0.8, rather than run the neural network 
with only the strongest correlated features, it was felt 
that it would be more beneficial and explanatory to 
run the algorithm with each of the four thresholds, 
ranging from all features to only the features with 
the strongest correlation, applying incremental cor-
relation thresholds of 0, 0.1, 0.3 and 0.5, respectively. 
Like before, the algorithms were conducted as the 
averages of 10 independent trials. Based on the results 
in the previous section, it was decided to use SGD as 
the training technique and sigmoid as the activation 
function.

Table 2 provides the accuracy of the results, where 
the rows correspond to the correlation thresholds, 
while the columns correspond to different numbers 
of clusters. Here, the error is lowest under the second 
most restrictive set of features and with 20 clusters. In 
addition, under every cluster in this row, the results 
are below 2.1% and thereby substantially outperform 
the baseline error of 2.75%.

Conclusions

This paper presented a neural network–based hard-
ness prediction algorithm that inputs features such 
as chemistry composition, aim gauge, aim width, 
rolling temperature and finishing temperature. The 
overarching goal was to improve hardness prediction 
for both known and unknown steel grades. While 
applying a supervised ANN approach using known 
label grades as training data and unknown grades as 
validation, a mean absolute error of well below 2.1% 

was achieved, following extensive experimentation 
with combinations of activation functions, training 
algorithms, cluster sizes and correlation thresholds. 
Ultimately, this substantially outperformed the base-
line error of 2.75%. 

For future work, the most imminent next step is to 
implement this algorithm in a real-time system using 
embedded C code. In addition, it is desirable to utilize 
these algorithms to solve complex steel industry prob-
lems such as improving shape from the hot strip mill 
and increasing mill productivity by reducing number 
of rolling schedules.
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Table 2
Validation Error (%) by Feature Set (organized by 
correlation threshold) and by Number of Clusters

Feature Set

No. of clusters

1 10 20 30 40 50

CORR(Xi,Y) > 0.5 2.30 2.34 2.32 2.48 2.17 2.39

CORR(Xi,Y) > 0.3 1.72 1.78 1.60 1.63 1.64 1.78

CORR(Xi,Y) > 0.1 2.36 2.42 2.22 2.66 2.15 2.04

CORR(Xi,Y) > 0 2.34 1.89 1.87 1.92 1.76 2.41
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