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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Synthetic Images of Longitudinal Cracks in Stainless Steel 
Slabs via Wasserstein Generative Adversarial Networks Used 
Toward Unsupervised Classification

Primary stainless steel production 
for an integrated steel mill includes 
ironmaking, steelmaking, casting, 
rough rolling and product rolling. 
While all of these steps have their 
inherent problems, this paper will 
focus on those manifested in the 
slabs after the cutting torch (see 
Fig. 1). Surface defects on continu-
ously cast slabs require treatment 
by grinding. This new phase in the 
process causes lower throughput of 
the final product and additional 
energy costs. The defects during 
rolling are carried out through the 
entire line of production when not 
detected early. The problems do 
not arise immediately; the fractures 
or dislocation continue with the 
rolling downstream. Where smaller 
and smaller thicknesses make them 
appreciable, they can waste signifi-
cant time and money for any given 
production line. A low-tech, low-cost, 
effective solution is a visual inspec-
tion of the slab surfaces during the 
production along with progressive 
steps during rolling, which requires 

constant conditional awareness by 
qualified operators.

In recent years, with the advent of 
machine-learning (ML) algorithms 
for annotation, classification and 
object detection, exciting applica-
tions have been proven. This project 
uses two technologies that permit 
and train models with fewer imag-
es of longitudinal crack detection. 
Synthetic images were created using 
Wasserstein Generative Adversarial 
Nets (WGAN)1–4 and then new 
defects were captured in real time 
using You Only Look Once (YOLO) 
framework.5,6 A research opportuni-
ty is presented here, situated at the 
convergence point of steel produc-
tion, computer vision, automation 
and machine learning.

Problem Statement — Finding an 
adequate number of well-labeled 
surface defects is a challenge for 
the construction of well-maintained 
frameworks for ML classification. 
In the case of object detection and 
classification for stainless steel, hot 

Authors

Diego Andrade (top row, left) 
Chief Scientist, ANT, Tampa, Fla., USA 
diego.andrade@ant-automation.com

Miguel Simiand (top row, right) 
Senior Project Manager, ANT, 
Pittsburgh, Pa., USA 
miguel.simiand@ant-automation.com

Javier Barreiro (bottom) 
Chief Executive Officer, ANT, 
Pittsburgh, Pa., USA 
javier.barreiro@ant-automation.com

The slab production process and image acquisition location.

Figure 1

http://www.aist.org
mailto:diego.andrade@ant-automation.com


69
OCT 2021 I  IRON &

 STEEL TECHNOLOGY I  AIST.ORG

rolling will deal with hot surfaces of metals with high 
reflectivity that are linked directly to light settings, 
surface structure, temperature and camera settings. 
Changing any of these parameters affects steel pro-
duction or data gathering.

Visual inspection of steel slabs by an inspector is a 
difficult task in most cases. There are many adverse 
factors such as the ambient temperature, large slab 
area and access to the bottom face of the slabs, 
which make the visual inspection unreliable. Also, 
human factors affect production; for example, work-
ing through night shifts, attention drawn to other 
events, subjectivity in terms of defect classification, 
and a short time frame to make decisions due to con-
tinuous production line speeds.

In practice, gathering proper data of surface defects 
is time-consuming and cost-prohibitive because of 
operator’s fatigue, and since not that many occur, 
camera setup does not capture them (i.e., improper 
lighting and other restrictive effects). It is a tedious 
job for operators to produce reliable tracking of 
surface defects. The problem centers on how to 
effectively apply and gather data from a constrictive 
number of examples and extrapolate the “meaning” 
of a steel surface defect to new and unseen examples. 
From there, another essential piece of this system is 
real-time defect detection and annotation for future 
learning.

It is believed that the excessive time allocated 
for longitudinal crack localization depends on five 
core limitations that make object detection difficult 
when using current machine-
learning models. First, these 
patterns in the slabs do not 
always follow a given position 
and size across the slab (see 
Fig. 2). Second, lighting setup 
can produce extreme cases for 
any defect in the surface of the 
steel slabs. Third, the frequen-
cy of the defects is minimal, so 
training takes excessive time 
(i.e., months) because of the 
lack of well-labeled data used 
for object detection. Fourth, 
real-time object detection of 
longitudinal cracks is a very 
domain-specific problem; a 
handful of applications exist, 
so picking the right model is 
essential. Finally, the fifth limi-
tation is ground truth selection 
from a set of real images, which 
is not a trivial task and requires 
patience and knowledge.

This paper will show how 
to create a countless number 

of examples to train a ML model when the training 
examples are limited.

Related Work 

Classification and object detection for steel produc-
tion need excellent imaging and properly labeled data 
in the search space. Imaging techniques used in the 
industry are one of two methods. The first method 
deals with gray-level intensity imaging, while the sec-
ond method uses range imaging.8 These techniques 
capture the failures of the steel surfaces and create a 
library of defects for later use.

Several groups have tackled the problem of object 
detection using Bayesian network classifiers.9–12 
Computer vision application in surface inspection 
systems is essential, and they are utilized for defect 
detection and classification in manufacturing. The 
downside of some of these classification systems is 
that they are feature dependent, requiring extensive 
domain knowledge to perform well. They are unique 
and do not translate well to other domains. Deep 
learning-based methods (e.g., convolutional neural 
networks) are feasible for use in surface inspection 
systems and outperform traditional methods in accu-
racy and inference time by considerable margins.12

Friedman et al. discussed supervised learning with 
naive Bayesian classifiers, where a strong assump-
tion of independence among features is contentious 
with state-of-the-art classifiers. Bayesian networks are 

Major crack types found on “as-cast” semi-processed steel slab (Source: Veitch-
Michaelis et al.7).

Figure 2
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representations of probability distributions that gen-
eralize the naive Bayesian classifier while represent-
ing statements about independence. They based their 
studies in the use of Tree Augmented Naive Bayes 
(TAN), which outperforms naïve Bayes, due to its 
computational simplicity (not requiring search) and 
the robustness of naïve Bayes.13

Franz Pernkopf proposed an approach for detect-
ing surface defects with three-dimensional charac-
teristics on scale-covered steel blocks. In flawless 
surfaces, their reflection properties change sharply. A 
technique called light sectioning was used as part of 
the range imaging capture for steel blocks. A depth 
map is obtained, and then segments of the surface 
are classified following a set of extracted features 
utilizing Bayesian network classifiers. For establish-
ing the structure of these Bayesian networks, a search 
algorithm was applied that tackles the issues of per-
formance and efficiency for structure learning, which 
achieves a good trade-off between classification per-
formance and computational efficiency for structure 
learning. Their experiments show that their selective 
unrestricted Bayesian network classifier outperforms 
the naïve Bayes and the tree-augmented naïve Bayes 
decision rules in the case of classification rate.

Yushi Jing et al. presented a framework to com-
bine discriminative data-weighting with generative 
training of intermediate models; they call it Boosted 
Bayesian Network Classifiers. They show that this type 
of classifier includes the basic generative models in 
isolation while improving classification performance 
for the suboptimal model.10

Convolutional Neural Networks — Convolutional neural 
networks (CNN) are specialized kinds of multi-layer 
neural networks, devised to categorize visual patterns 
straight from raw images with minimal pre-processing 
as well as for image recognition, achieving impressive 
recognition rates in image classification tasks. The 
main advantage of CNN compared to its predecessors 
is that it automatically detects the essential features 
without any human supervision. Also, generally, CNN 
are computationally efficient, using convolution and 
pooling operations and performs parameter sharing. 
In turn, they are enabling CNN models to run on 
any device, making them universally attractive and 
performing automatic feature extraction to achieve 
superhuman accuracy.

CNNs are in use for demanding large-scale proj-
ects but lack real-time applications, and they are also 
domain-specific (because of the lack of data sets). 
Even though CNNs are used in object detection and 
image classification tasks, industrial surface inspec-
tion systems barely utilize their potential.12

Masci et al. presented a Max-Pooling Convolutional 
Neural Network approach for supervised steel defect 
classification. On a classification task with seven 

defects collected from a real production line, a low 
error rate of 7% was obtained. They had good results 
in comparison with support vector machine (SVM) 
methods; when also using the train nets, their solu-
tion was deployed directly on raw images, which trans-
lates into a time reduction.11

Generative Adversarial Networks — Generative adver-
sarial networks (GANs) are a class of deep generative 
models that aim to learn a target in an unsupervised 
fashion.14 It appears that deep generative models are 
likely to represent the world around us from labeled 
data, similar to how humans developed complex 
mental models in an unsupervised way, directly from 
sensory experience.15 Deep generative models are a 
dominant class of unsupervised machine-learning 
models. The robust models are applied in a variety 
of applications, including image generation, super-
resolution, text to image, text to image synthesis, 
image in-painting, texture synthesis, image editing, 
object detection, music generation, medical anomaly 
detection and learned compression. GANs provide a 
way to learn deep representations without extensively 
annotated training data.16

GANs, as first described by Goodfellow,2 are one 
of the most popular approaches to learning in a fully 
unsupervised fashion. In GANs, one network produc-
es a rich, high-dimensional vector that is used as input 
in another network, and attempts to choose an input 
that the other network does not know how to process. 
This framework also has been derived by minimizing 
a divergence between the model distribution and the 
correct distribution.4

A GAN framework consists of a two-player game 
where the first player, the generator, is learning to 
transform some simple input distribution (usually a 
standard multi-variate normal or uniform distribu-
tion) to a distribution on the image space (see Fig. 3) 
such that the second player, the discriminator, cannot 
tell where the samples belong or until neither player 
can improve their loss unilaterally. The discriminator 
examines real images (training process) while gen-
erating images independently. Then there is a judg-
ment whether the input images are real or generated. 
The framework concludes with an output probability 
P(x), where P is the probability distribution that the 
image x is real or not. If the input is real P(x) = 1. If 
the input image is generated, the results are 0. The 
discriminator finds the proper allocation of features 
through the process of identifying the real images. At 
the same time, we want to create images that are close 
to the distribution P(x) = 1; in other words, match the 
real images. According to Reference 17, there is no 
evidence that new GAN algorithms in use and tested 
outperform the non-saturating GAN introduced by 
Goodfellow,2 so the same architecture was used in the 
system.

http://www.aist.org
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Learning the probability distribution 
means learning the probability density. 
This is often done by defining a paramet-
ric family of densities (Pθ)θ∈Rd and finding 
the one that maximized the likelihood on 
our data: if we have real data examples 

x i

i

m( )
=

{ }
1
, then the problem is to solve 

max log
θ∈

θ
R i

m i

d m
P x

1
1=

( )∑ ( ) .

The advances in GAN have been for 
the most part empirically driven, mak-
ing it essential for the use of high-quality 
evaluation metrics.15 Wasserstein is a dis-
tance function defined between probabil-
ity distributions on a given metric space 
M. Intuitively, if each distribution 
is viewed as a unit amount of 

“dirt” piled on M, the metric is 
the minimum “cost” of turning 
one pile into the other, which is 
assumed to be the amount of dirt 
that needs to be moved times the 
mean distance it has to be moved. 
Because of this analogy, the met-
ric is known in computer science 
as the earth mover’s distance.

The fact that the M distance 
is continuous and differentiable 
means that the critic till optimal-
ity can be trained. The argument 
is simple: the more the critic is 
trained, the more reliable the 
Wasserstein gradient, which is 
actually useful by the fact that 
Wasserstein is differentiable 
almost everywhere. For more in-
depth details, refer to Arjovsky 
et al.4

It is the case that the model manifold and the cor-
rect distribution’s support have a non-negligible inter-
section, the typical remedy is to add noise term to the 
model distribution. This is why, in the literature, a 
noise component exists. The optimal standard devia-
tion of the noise added to the model when maximized 
is around 0.1 to each pixel in the generated image, 
after normalizing the pixels between 0 and 1.4

Backpropagation: The goal of the system is to maximize 
the probability of recognizing real images as real and 
generated images as fake images. The measurement 
uses cross-entropy p log (q). For real images, p (the 
true label for real images) equals 1. For generated 
images, the label is reversed (i.e., one minus label). So 
the objective becomes:

max log log
D x p x z p zV D E D x E D G z

data z
( ) = ( )  + − ( )( )( ) ( ) ( ) 

1
rrecognizes real images recognizes generated images           

, 

where D and G are the probability distribution for the 
discriminator and the generator, respectively.

On the generator side, its objective function wants 
the model to generate images with the highest pos-
sible value of D(x) to fool the discriminator,

min log
D z p zV G E D G z

 z
( ) = − ( )( )( ) ( ) 

1
Optimizes G to trick the discriminator

. GANs are defined 

as a minmax game in which G wants to minimize V 
while D wants to maximize it.

minmax , log

log
G D x p x

z p z

V D G E D x

E D G z

data

z

( ) = ( ) 

+ − ( )( )
( )

( )





1(( ) 

Gradient descent is used to optimize both objective 
functions (see Fig. 4). The iterations in the model are 

Example of a generative adversarial network (GAN) architecture.

Figure 3

Summarizes the data flow and the gradients when backpropagation is applied.

Figure 4
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made in a staggered fashion; first, 
the generator model parameters 
are locked and perform a single 
iteration on the discriminator 
using real images. After this stop, 
the focus shifts to the generator 
locking parameters on the dis-
criminator side. The generator 
training stage uses backpropaga-
tion that targets the discriminator 
into thinking the images are real. 
These two networks are trained 
in a staggered fashion, fighting to 
improve themselves.

The pseudo-code in Algorithm 
1 shows how a WGAN is trained.

Generator Diminished Gradient: 
However, a gradient diminish-
ing problem is encountered for 
the generator. The discrimina-
tor usually wins early against the 
generator. It is always easier to 
distinguish the generated images 
from real images in early training. 
That makes V approaches 0, i.e., 
log(1 – D(G(z))) → 0. The gra-
dient for the generator will also 
vanish which makes the gradient 
descent optimization very slow.  
To improve that, the GAN pro-
vides an alternative function to 
backpropagate the gradient to 
the generator.

Proposed Approach 

Surface inspection and the defect detection problem 
can be generalized into the combination of feature 
extraction and classification problems.12 The tech-
niques shown above make use of hundreds to thou-
sands of examples. In contrast, this method uses a 
couple hundred well-labeled images to create new 
data, using generative adversarial networks, from 
there the new data is used to train the YOLO frame-
work to have a real-time application finding surface 
errors, this two techniques are well used in other 
applications.5,6

The method used occurs in four steps: (1) collect-
ing data, (2) data analysis, (3) data synthesis and (4) 
data classification, as shown in Fig. 5.

Developing automatic detection and classification 
of surface defects for stainless steel slabs has been 
a challenging problem for the steel manufacturing 
industry. The block diagram shown in Fig. 5 repre-
sents the steps to fulfill this task automatically.

A large amount of information is gathered during 
this process, mainly in the form of images. The system 
evaluates the images and classifies them by family, 
type and severity, then suggests actions to be taken 
to overcome any defects detected. This information, 
along with the high-definition images, are presented 
to the supervisor to make the final decision. The 
automatic system learns over time, using the operator 
acknowledgment and retraining a classification neu-
ral network periodically.

Data Collection — The computer vision recognition 
system uses two ultrahigh-resolution line scan cam-
eras, one for each slab side. The images are taken 
immediately after the product leaves the cutting 
machine. The slab produced is marked with identifi-
cation for tracking purposes. The camera’s location 
after the slab marker has many advantages, as defects 
can be detected early, straight after the slab identi-
fication number is generated. The presence of a pit 
in this section of the line facilitates the installation 
of the bottom camera. Both camera housings were 
designed with refrigeration to maintain operating 

Algorithm 1

WGAN, the algorithm first implemented by Arjovsky.4 All experi-
ments in the paper used the default values a = 0.00005, c = 0.01, m = 
64, ncritic = 5.

Require: a, the learning rate. c, the clipping parameter. m, the 
batch size. ncritic, the number of iterations of the critic per generator 
iteration. w0, the initial critic parameters. θ0, the initial generator’s 
parameters.

Ensure: The batch of real data images was normalized

1: while θ0 has not converged do

2:      for 7 = 0, ncritic do

3:          Sample x i

i

m

r
( )

=
{ }

1
� P  a batch from the real data

4:          Sample z p zi

i

m( )
=

{ } ( )
1
�  a batch of prior samples

5:          gw = ∇ θw w
i

i

m

w
i

i

m

m
f x

m
f g z

1 1
1 1

( )
=

( )
=( ) − ( )( )



∑ ∑

6:          w ← w + a · RMSProp (w, gw)

7:          w ← clip (w, –c, c)

8:       end for

9:       Sample z p zi

i

m( )
=

{ } ( )
1
� a batch of prior samples

10:     gθ ← −∇θ θ
1

1m
f g zw

i

i

m ( )
= ( )( )∑

11:     θ ← θ – a · RMSProp (θ, gθ)

12: end while
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temperatures within the specification range. Also, 
swivel arms are part of the structure to properly align 
the camera, pointing to the slab surface (see Fig. 6).

The lighting technology used is LED as it has larger 
mean-time-between-failure (MTBF) than other light 
sources and lower power consumption and provides 
uniform illumination. Refrigerated lighting hous-
ing was designed and installed to protect light bars 
from radiation heat coming from the hot slabs and 

to enhance light lifetime. A typi-
cal slab is between 1.5 and 2.0 
m width by approximately 12 m 
long. In order to get ultrahigh-
definition images, line scan cam-
eras with high line rates are used. 
With the technology used, 36 pix-
els/mm2 images were obtained 
for slabs up to 2 m wide and maxi-
mum line speed of 2.5 m/second.

Data Analysis — The data analysis 
is divided into shape or geomet-
ric defects and surface or tex-
tural defects. Each analysis uses 
different mathematical tools for 
detection and classification. The 
slab’s dimensions are calculated 
in order to ensure compliance 
with the production order and to 
guarantee uniformity. After the 
slab edges are identified in the 
images, to be able to compute the 
real dimensions, it is required to 
know the pixels per millimeters 
factor and also the slab thickness. 

The slab thickness is a value given by the production 
order. The pixels per millimeters factor is obtained 
during the camera adjustment process. To do this, a 
calibration pattern was designed, which is also used to 
center and align the camera.

After the dimensions are computed, five different 
features are evaluated:

The process consists of four steps: (1) the user specifies a given set of examples 
(hundreds) after image pre-processing is applied; (2) the operator selects and 
labels the approximate location and dimensions of the longitudinal crack; (3) data 
synthesis occurs within the generative adversarial network; (4) finally, a set of 
synthetic images (tens of thousands) is the output ready for classification using the 
YOLO framework.

Figure 5

Camera location on the top side of the slab area before the cutting torch (a); camera with a minimum number of components on 
the field. Internal panel, custom positive pressure and air-cooled enclosures configurations (b); and LED bar, camera heat shield 
and camera insulation (c).

Figure 6

(a) (b) (c)
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 • Average width.
 • Tail width.
 • Center width.
 • Head width.
 • Uniformity width.

Pre-Processing — The images obtained are in black 
and white and they require pre-processing. One of the 
techniques used improves the contrast in the images. 
Such a technique is known as adaptive histogram 
equalization (AHE, see Fig. 7). It uses different histo-
grams in the image and combines them to redistrib-
ute the lightness values of the image. This technique 
improves the local contrast, meanwhile enhancing 
the edge definition on the objects of the image. One 
of the drawbacks to AHE is noise amplification for 
homogeneous regions in the image, which is the case 
for steel production. The most common variant to this 
technique is the use of contrast limited adaptive histo-
gram equalization (CLAHE), which prevents noise by 
limiting the amplification.

Data Synthesis and Classification — Krizhevsky et al. 
introduced several data augmentation techniques 
to artificially increase the data set size using label-
preserving transformations.18 To have more variety 
in data, rather than only modifying the images, it is 
desirable to create new samples to expand the data 
sets. Goodfellow et al. introduced GANs to use neural 
networks to generate new samples using adversarial 
training.1–3 Using the conditional GAN, compared 

to other domain-specific methods, Isola et al. intro-
duced a general-purpose paired image translation 
method also known as pix2pix.19 Because obtaining 
paired image data is expensive and difficult, Zhu et 
al. introduced a cycle-consistent adversarial network 
architecture called CycleGAN for unpaired image 
translation problems.20 With the advancements of 
synthetic image generation, it has become a common 
practice to use generated images in training neural 
networks to avoid the high cost of creating large data 
sets with real images. Shrivastava et al. introduced 
an improved approach to image generation with 
Simulated+Unsupervised learning (SimGAN) which 
uses synthetic images rather than random vectors as 
inputs to their GAN.21 By using a self-regularization 
term and a local adversarial loss, SimGAN converts 
synthetic renderings into realistic images without 
using any labeled data.21 Their method is able to 
achieve local changes without altering the global 
structure of the image. In contrast, a data augmen-
tation method is proposed for altering global scene 
composition in the image WGAN.4

Local defects are limited in space but may appear in 
a discontinuous fashion on different places and differ-
ent shapes on the surface (i.e., scratches, cracks, rup-
tures, blisters and bruises). On the other hand, dis-
tributed defects are spread over the large area of the 
surface and may appears in a continuous pattern.22

Features Detection: A fast objection approach is 
utilized that was used by Redmon in his YOLO 

Original image (a) and Image after applying the contrast limited adaptive histogram equalization pre- processing method (b).

Figure 7

(a) (b)
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implementations. It uses a regression problem to 
separate especially bounding boxes and its associate 
class probabilities. A single neural network assigns the 
bounding boxes and its classification from full images 
in only one pass. YOLO is extremely fast, working in 
real time between 45 frames per second (fps) and 155 
fps. More details can be found directly in Redmon’s 
references.5,6,23,24

User Interface — The graphical user interface (GUI) 
is an important feature designed with simplicity, per-
formance and usability in mind. The system has a full 
and complete interaction with the operators/users, 
utilizing a GUI implemented in responsive HTML5 + 
CC3 + JavaScript. It works efficiently across all major 
desktop platforms using any of the best-known inter-
net browsers on the market. The GUI allows the user 
to access real-time and historical data, with slab track-
ing identification and inspect in ultrahigh-definition 
imaging (see Fig. 8). The operator is able to mark 
slabs, mark region of interest and defects, as well as 
to pre-classify defects when detected, zoom in and 
zoom out slabs to visualize from 1 mm to meters. In 
real time after any slab is produced, the system evalu-
ates it and presents at least the following data to the 
operator:

 • Shape information (width and length 
calculated).

 • Defects (classified and action required).
 • High-definition image of both slab faces.

Results and Discussion 

In this project, a visual analysis tool designed to clas-
sify longitudinal cracks and to capture sets of images 
to train a GAN was developed. The final goal is 
on-line for real-time automatic defect detection and 
classification. The whole system uses a server run-
ning the Windows 10 operating system with a 3.9 GHz 
Intel Core i3-7100 and 16 GB of RAM. The lighting/
camera rig was designed and manufactured by ANT. 
The camera is a line scan camera — Teledyne Dalsa 
P3-8X-12K40 Camera Link.

The system was trained with images acquired 
through linear cameras with a resolution of 12,288 x 
1 pixels, and a pixel size of 5 µm, maximum data rate 
of 8 x 40 Mhz and a maximum line rate of 33.7 kHz. 
The responsivity of this camera is presented in Fig. 9. 
The significant advancement in camera technology in 
recent years along with the reduction of its cost will 
allow for the use of more sensitive cameras with high 
dynamic range and multi-line technology in future 
applications with this same platform to improve 
further the quality of the images that feed the GAN 
network presented in this paper.

The current linear cameras with technology multi-
line CMOS Time Delay & Integration (TDI) delivers 
the best performance, a combination of high speed 
and responsivity with low noise. Over a multi-line 
CMOS sensor, the image is integrated over multiple 
adjacent lines as it moves over the sensor. All these 
lines are combined to produce a highly responsive 

Screen capture of the user interface in real time.

Figure 8
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output. Thus, to achieve a correct summing, the 
image motion across the sensor must be synchro-
nized to the sensor time integrator. When the speed 
is not constant, a synchronizing external trigger 
pulse — derived from an encoder that generates one 
pulse for one object pixel of motion — must be pro-
vided. The encoder signal must be connected to the 
encoder input of the frame grabber. Better respon-
sivity requires less light power, which makes it easier 
to achieve uniformity of light under different ambi-
ent conditions. It is a fundamental factor that high 
acquisition frequency requires much light power; the 
frequency is linearly related to the camera resolution.

Ultrahigh-resolution cameras, image analysis and 
current internet tools were combined to build a fully 
versatile system for defect detection, classification and 
visualization. The full system uses two cameras and 
two light sources — the minimum hardware require-
ment to inspect both slab sides. Other companies have 
systems with similar capabilities but are made up of 
up to eight cameras, which implies more significant 
infrastructure, higher maintenance, more wiring, 
maintenance and more processing units. The system 
enabled digital supervised inspection, achieving reso-
lutions of 36 pixels/mm2, which is an adequate reso-
lution to detect small stainless steel surface defects. 
Currently, and during a six-month period, the system 
collected information to build the first image data 
set to be used for the GAN supervised learning. The 
GUI allows the plant operators and quality team to 
add new markers to continuously retrain to the system 
with surface defects in order to improve accuracy in 
the detection. Nowadays, the hardware capabilities 
are incredibly powerful, which enables obtaining and 
processing of high-resolution images in real time. As 
per the resolution achieved and due to the flexibility 

of the supervised learning of the GAN, this technol-
ogy could be applied to carbon steel slabs, where the 
size of the defects is more significant than in stainless 
steel slabs.

Detecting defects upon the creation of stainless 
steel slabs at continuous casting can avoid future 
product degradation and product losses. If the defect 
is detected early, countermeasures are available to fix 
it on time. Ultrahigh-resolution images on both sides 
of the slab are processed at high speed, taking advan-
tage of modern GPU and parallel programming. This 
system designing goals and main objectives are:

 • Decrease non-quality.
 • Improve quality control’s efficiency while reduc-

ing its cost.
 • Anomalies detection, defect location and 

classification.
 • Avoid defective slabs to be processed in 

upstream lines.
 • A smart system – able to add and learn defects.

Conclusions 

Wasserstein GAN (WGAN) is an essential alternative 
to traditional GAN training. They showed improved 
stability for learning, contain problems like mode col-
lapse, and produce meaningful learning curves help-
ful for debugging and hyperparameter searches, and 
showed that the corresponding optimization problem 
is reliable. In the long run, the discriminator can 
identify tiny differences between the real images and 
the generated, while the generator shows images that 
the discriminator cannot discern if they are real ones 

Camera responsivity comparison for linear cameras and extra dynamic range cameras with CMOS Time Delay & Integration.

Figure 9

(a) (b)
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The stages for random outputs of the GAN: (a) is the latent space (i.e. noise), (b) is the first batch of solutions at 1,000 epochs, 
(c) shows solutions at 3,000 epochs, (d) shows solutions at 5,000 epochs, (e) shows solutions at 7,000 epochs, (f) shows 
solutions at 12,000 epochs, (h) shows the final solutions reached after 15,000 epochs.

Figure 10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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or not. Finally, WGAN models, as described, converge 
into natural-looking images, as shown in Fig. 10h.

Despite a widespread recognition that generative 
models lie at the frontier of artificial intelligence 
research, it remains notoriously challenging to evalu-
ate solutions with the inception score metric that has 
gained popularity to assess the quality of generative 
models to create synthetic images.25 In other words, 
there needs to be a way of effectively evaluating 
results, which remains a weakness in this approach, 
not because a solution is not converging but because it 
needs a ground truth beyond visually similar longitu-
dinal cracks to the GAN output. A collaboration with 
experts in metallurgy and steelmaking is envisioned, 
in which the system can be deployed and tested.

Using this method, strong modeling performance 
and stability were displayed across a variety of hyper-
parameters. Now that there is a more stable algorithm 
for training GANs, it is hoped that this work will open 
the path for more robust modeling performance on 
large-scale image data sets.

Even though classifications were achieved using 
YOLO in real time, this classification is not above 
human operators. There are two main ideas with 
respect to the future direction of this work: first, to 
consider better data image sets, which are only pos-
sible with the industry participation in the form of 
process engineers, operators and other experts; and 
second, to keep trying YOLO on these new sets of 
synthetic images, achieving better and better fidelity 
on real-time classification.

As per the resolution achieved and due to the flex-
ibility of the unsupervised learning of the CNNs, this 
technology can also be applied to carbon steel slabs, 
where the defect sizes are larger than in stainless steel 
slabs.
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