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Digital technologies are 
transforming industry at all levels. 

Steel has the opportunity to lead all 
heavy industries as an early adopter 

of specific digital technologies to 
improve our sustainability and 

competitiveness. This column is 
part of AIST’s strategy to become 

the epicenter for steel’s digital 
transformation, by providing a 

variety of platforms to showcase 
and disseminate Industry 4.0 

knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.

Maintenance for Ironmaking Technologies Becomes Smart: 
The Power of Digitizing, Sharing and Linking Valuable,  
Empirical Knowledge

Digital transformation will offer 
huge potential to realize innova-
tive, knowledge-based maintenance 
solutions and strategies. They will 
be the key for better use of resourc-
es to drastically reduce the time 
required for inspections and repair 
processes. This contribution aims 
to give insight into the most impor-
tant challenge: Digitizing, sharing 
and linking valuable maintenance 
knowledge across operators and 
plants. Once this step becomes a 
success, smart maintenance will 
generate — beyond the hype — a 
significant added value and thus 
also ensure the acceptance in practi-
cal use to pave the way from fail and 
fix to prevent and predict.

Driven by the increasing glob-
al competition and growing pres-
sure to maximize efficiency, digital 
transformation has gained momen-
tum within the industrial sector. 
While applications of new technolo-
gies cover the entire life cycle of 
a production plant, manufacturing 
companies keep the focus on the 
commissioning, operation, mainte-
nance and modernization of their 
plants. This paper puts mainte-
nance of ironmaking technologies 
in the light of the digital age. It 
is addressed to all plant operators 
facing the challenge of optimizing 
existing processes in a meaningful 
way. Condition-based maintenance 
will be the key for better use of 
resources to drastically reduce time 
required for inspections and repair 
processes. The first part gives the 
reader an understanding of future 
maintenance and its possibilities. 
The second part will highlight over-
all requirements and their impor-
tance for a successful implementa-
tion and integration of new strate-
gies into existing infrastructures. 

The Evolution of Maintenance 

Service and maintenance are essen-
tial elements of every manufactur-
ing company. The overall objec-
tive is to ensure a long service life 
and reliable operation of the plant 
on the one hand, and to avoid 
unplanned downtimes on the other, 
thus achieving high plant availabil-
ity. One of the main challenges is to 
efficiently implement maintenance 
and repair processes. Every single 
maintenance and servicing task is 
associated with costs, and the larger 
and more complex production facil-
ities are, the more important it is to 
plan them as cost-effectively as pos-
sible. Depending on how a replace-
ment affects the ongoing produc-
tion process, several maintenance 
and servicing strategies are being 
considered.

Common Strategies — The two most 
common strategies are preventive 
and reactive maintenance. Reactive 
maintenance is performed when 
equipment has already broken down. 
Ideally, this approach should only 
be applied to parts that are easy to 
replace, less expensive and that do 
not affect the ongoing production 
process in any way. Otherwise, it is a 
far more costly strategy due to unex-
pected stoppages, especially as the 
unpredictable nature implies that 
workforce and spare parts may not 
be immediately available.1 To avoid 
these risks, maintenance is usually 
performed proactively. Preventive 
maintenance — a periodically 
scheduled inspection — is intended 
to prevent breakdowns. However, 
decisions on whether an asset will 
enter the wear phase traditionally 
rely on general estimates and aver-
ages rather than on actual statistics 
on its condition.1 It can be seen as 

Authors

Stephan Weyer 
formerly of Paul Wurth, Luxembourg, 
Luxembourg

Fabrice Hansen  
Vice President, Asset Optimization, 
SMS digital; Vice President, Digital 
Transformation, Paul Wurth, 
Luxembourg, Luxembourg 
fabrice.hansen@paulwurth.com

Yves Reuter 
Senior Project Engineer — Technical 
Sales, Paul Wurth S.A., Luxembourg, 
Luxembourg

Alexander Schmitz  
Data Scientist, Paul Wurth S.A., 
Luxembourg, Luxembourg  
alexander.schmitz@paulwurth.com

http://www.aist.org


117
SEP 2021 I  IRON &

 STEEL TECHNOLOGY I  AIST.ORG

a purely subjective strategy as frequencies of tasks to 
be carried out are difficult to measure. To play it safe, 
servicing tasks are usually carried out far too often 
and components are replaced even though they still 
work perfectly.

Nevertheless, it is not productive to send a tech-
nician to tend to a machine that does not need an 
action, nor is it efficient if a machine fails because 
it has not received the attention it requires.2 To fully 
exploit the potential for optimization, the widespread 
use of information and communication technologies 
nowadays forms the basis for new condition-based 
strategies.3,4 The overall aim is to carry out mainte-
nance and servicing proactively — mainly condition-
based rather than subjectively and periodically. This 
allows for optimization of the use of resources and 
keeping costs as low as possible. 

Condition-Based Strategies — The main challenge is 
to recognize initial signs in order to predict or even 
delay and avoid failures in the long term. Equipment 
usually does not suddenly fail or stop working. It will 
break down gradually, over a period of weeks, months 
and years. During this time, components will out-
put numerous invisible warning signals (e.g., slight 
changes in vibration, functional behavior or general 
operation conditions). If these become perceptible for 
humans, it is usually too late and the wear is already 
too advanced.1 The aim is to find the path between 
the most cost-efficient time and the moment before 
the risk suddenly increases (Fig. 1).

Condition-based maintenance (CbM) can be imple-
mented on different levels of complexity. A distinction 

is made between diagnoses, forecasts and strate-
gic analyses.3 Diagnosis evaluates the current status. 
Performance indicators such as the efficiency, run 
time or capacity can be calculated. Afterwards, main-
tenance can be planned according to these results. 
This saves time and costs in a first step. If a plant is out 
of operation for a short period of time or is running 
on a lower capacity, scheduled tasks can be postponed 
accordingly. Furthermore, a diagnosis can uncover an 
inappropriate use of the equipment. Guidance for a 
proper use can ensure the maximum lifetime. Finally, 
diagnoses can also uncover deviations from the nor-
mal behavior, which can be an indication of potential 
failures.

Forecasting is the process of predicting the future 
condition in order to determine the remaining life-
time or remaining useful life of the equipment. 
The optimal time for maintenance can be regularly 
predicted to provide a helpful guidance next to the 
subjective decisions of the maintenance staff. These 
predictions have to be provided to allow enough time 
to arrange workforce and spare parts. Forecasting is 
also known as predictive maintenance.4

To reach the third level of complexity, poten-
tial root causes for failures have to be determined. 
Countermeasures can be taken before the failure 
occurs. This allows strategic planning of maintenance 
by postponing upcoming failures until a planned 
stoppage will take place. It is termed as prescriptive 
maintenance and allows the operators to be strategi-
cally best prepared. Fig. 2 summarizes the three steps 
of CbM.

Equipment life cycle and aim of condition-based maintenance strategies.

Figure 1
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Prerequisites and Technical Requirements 

There is great potential for the optimization of con-
ventional strategies. To take maintenance to the next 
level, a number of prerequisites have to be fulfilled. 
The following section summarizes the main require-
ments identified for data acquisition, knowledge 
extraction and knowledge provision.

Data Acquisition

	 •	R-A1 Acquisition and storage of production 
data: Data is the raw material for further opti-
mizations. They have to be aggregated from 
production facilities and disparate systems 
such as industrial databases, programmable 
logic controllers (PLCs) or Internet of Things 
(IOT)-enabled sensors. Open standards such 
as Open Platform Communications United 
Architecture (OPC-UA) enable an easy acquisi-
tion. Nevertheless, proprietary protocols are 
still present in older production plants and 
have to be supported.

	 •	R-A2 Semantic description of acquired data set: 
A semantic description is beneficial to compare 
measuring points, machines and systems in 
log-term against each other. To facilitate a com-
parison, data can be assigned to individual role 
classes and relationships have to be modeled.

	 •	R-A3 Data storage and access: To draw the 
right conclusions for maintenance optimiza-
tions, data needs to be processed, analyzed 
and compared in many ways. This leads to the 
requirement for a database that is optimized for 
the efficient storage and provision of measured 
values from sensor devices. Since the analyses 
will not take place at the control level, data 
must be transferred to a designated infrastruc-
ture using a suitable replication mechanism.

	 •	R-A4 Capturing feedback from the operational 
side: Feedback from the operational side will 
allow data to be labeled and assigned to spe-
cific events that may have happened during 
operation. It will be beneficial for the later 
evaluation to not only gather production data 
from the ongoing operation but also direct 
feedback from the operating and maintenance 
personnel.

Knowledge Extraction — As described in the previous 
section, the main challenge is to make changes in the 
data visible. It helps to identify potentials for optimiza-
tion, to uncover misuse of equipment or to detect criti-
cal failures before they occur. However, the most criti-
cal knowledge about equipment behavior, plant usage 
or frequency of failures is in the engineer’s possession. 
Equipment can signal a large number of phenomena 
during operation that can be caused by different 

Condition-based maintenance on three levels of complexity: diagnoses, forecasts and strategic analyses.

Figure 2
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operating conditions or that can be a deviation from 
the normal behavior. Process and maintenance engi-
neers are able to differentiate and can identify essen-
tial phenomena that may indicate an impending fail-
ure. This entails the following requirements: 

	 •	R-B1 Feature and knowledge extraction by the 
engineers: To make maintenance optimizations 
a success, engineers must have the possibility to 
independently digitize and capitalize their own 
knowledge without support of another program-
mer. Current approaches on the market mostly 
avoid this step and follow a semi-supervised 
or unsupervised approach without integrat-
ing valuable domain knowledge. Experienced 
staff must first interpret the importance and 
relevance of detected anomalies.

	 •	R-B2 Digitizing knowledge for a wide range of 
use cases: Engineers should have the possibil-
ity to digitize any knowledge that can help to 
optimize maintenance. This should include for 
example:

–	 The comparison of current conditions to 
historical baselines and averages as well as 
the classification of conditions according 
to well-known anomalies, patterns and 
failures.

–	 The modeling of dependencies between 
anomalies to reproduce and link a 
sequence of phenomena to known failures.

–	 The recognition of repetitive events over 
a defined period (remember and forget 
knowledge) in order to identify and pre-
vent the reoccurrence of specific phenom-
ena or failures.

–	 The detection of short- or long-term trends 
of relevant key performance indicators 
(KPIs) and behaviors to inform or warn 
before a simple threshold is exceeded.

	 •	R-B3 Integration of machine learning for 
advanced analysis: Machine-learning algo-
rithms will strongly support failure detection or 
prediction.5 Engineers should have the possibil-
ity to train artificial intelligence (AI) models 
intuitively. Depending on the use case, classi-
cal machine-learning techniques (for exam-
ple, pattern recognition on uni- or multivari-
ate data) or deep-learning approaches (using 
recent advances of neural-net architectures, 
such as RNN or LSTM for sequence modeling) 
can be more suited for the detection of emerg-
ing equipment failures. Before the training of 
the machine-learning algorithm, a data valida-
tion process in which the process engineers 
can apply their process knowledge to select 
and filter the relevant data for the use case is 

usually helpful to improve the performance of 
the algorithm.

Knowledge Provision — Once the knowledge has been 
extracted, it must be made available to the people 
who can benefit from it in daily operations. For this 
reason, the following essential requirements have 
been identified:

	 •	R-C1 Sharing knowledge across all stakehold-
ers: The extracted knowledge will create the 
most significant added value in optimizing the 
current processes if it is shared between all 
stakeholders who benefit from it. Information 
must be therefore tailored to different engineer 
groups and provided at different levels of detail. 
Knowledge should be easily accessible from 
anywhere.

	 •	R-C2 Connection to existing computerized 
maintenance management systems (CMMS): 
Nowadays, the planning of inspection and 
maintenance work is managed by CMMS. They 
are designed to help maintenance staff in 
organizing tasks and spare parts as well as 
in carrying out maintenance more effectively 
by helping management make informed deci-
sions.6,7 The main goal of CbM is to optimize 
this planning in order to save time and costs. 
Extracted knowledge must therefore be directly 
integrated into these systems via appropriate 
interfaces. It allows the engineer to be strategi-
cally best prepared and informed for possible 
failures and breakdowns.

Key Technologies for the Implementation of CbM 

As described in the previous sections, a successful 
implementation of CbM requires data as raw mate-
rial on the first hand that can be used by a suitable 
platform for extracting and sharing valuable knowl-
edge by and to all experts and engineers. In light 
of Industry 4.0, Paul Wurth combined its process 
knowledge and mechanical expertise with the skills 
of developers and data analysts within the in-house 
startup incubator to develop a tool kit for engineers 
that fulfills the requirements mentioned earlier. The 
tool kit supports the engineer:

	 •	To acquire and store production data from all 
PLCs, IOT-enabled machines and databases. 
Data becomes intuitively accessible, which is 
facilitated by a semantic description of acquired 
data sets, and can be used isolated from the 
production control for process and mainte-
nance optimization.

http://www.aist.org
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	 •	To digitize and capitalize valu-
able process and maintenance 
knowledge that has been 
gained about the production. 
It will not only enhance CbM, 
but will also allow building up 
a knowledge base of know-how 
over decades.

	 •	To share acquired knowledge 
from one site to another in 
order to compare machines, 
plants and factories. Once 
a knowledge base has been 
established for a plant and 
CbM has been implemented, 
it can be easily scaled up to 
other similar equipment and 
plants.

Key technologies that have 
been developed and that are 
being used in order to take main-
tenance to the next level are visu-
alized in Fig.  3. They will be described within the 
following sections. Since the most important step 
toward CbM is the knowledge extraction, the follow-
ing section focuses on the two developed software 
modules RulesXpert and AIXpert. The I.T. infrastruc-
ture and data backbone, embodied by the Paul Wurth 
Acquisition Box and dedicated database system, have 
already been introduced in Reference 1. According to 
the requirement R-A1, it acquires data from databases, 
PLCs or human-machine interfaces (HMIs) – inde-
pendently of its format and of the communication 
protocol that has to be used. By fulfilling this require-
ment, data is semantically described, classified and, 
according to requirement R-A3, persistently stored. 
Depending on the type of data, it is either stored in a 
time series, graph-based or relational database togeth-
er with meta information. A web service provides a 
level of abstraction and uses the metadata to facilitate 
data access and communication between higher-level 
tools and applications and the databases.

Knowledge Extraction With RulesXpert — RulesXpert 
is the core environment for knowledge extraction. 
According to requirement R-B1, it is implemented as 
a zero-code platform to define business logic without 
any programming skills. RulesXpert allows domain 
experts to create, test, debug, publish, continuously 
execute on real-time sensor or expert model data, 
and to supervise and continuously improve rule-based 
logic to automate their process knowledge or main-
tenance expertise. It empowers maintenance engi-
neers to make use of their in-depth knowledge about 
their equipment by providing an easily accessible 
and safe way to implement rule-based logic into the 

level 2 automation system. RulesXpert provides a user-
friendly platform that enables rule design, requiring 
no conventional coding skills, such that no automa-
tion or I.T. engineer is required to create a real-time 
digital recommendation system. This allows domain 
experts to rapidly create new level 2 functionalities 
and significantly shorten the development time versus 
conventional software approaches. Thus, RulesXpert 
responds to the need for continuous improvement 
to better market competitiveness and safe opera-
tions. The scope of the process and maintenance rule 
projects is according to requirement R-B2 very broad, 
covering, e.g.:

	 •	Mathematical calculations and transformations, 
e.g., for the calculation of use case–specific 
KPIs.

	 •	Inference of recommendations and triggering 
alarms, tasks, mail or push notifications to the 
operational personnel.

	 •	Detection of phenomena and short-term, mid-
dle-term or long-term trends of equipment 
conditions.

	 •	Reasoning based on historical data to compare 
conditions to historical baselines, averages or 
sums and to detect repetitive events or the reoc-
currence of detected anomalies.

	 •	Classifications of conditions according to well-
known anomalies and patterns.

	 •	Integration of machine-learning models as a 
black box for advanced predictions or pattern 
detections.

Key technologies for the implementation of CbM.

Figure 3
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The RulesXpert module consists of two compo-
nents. First, a service that coordinates a rule project 
execution on real-time production data from one or 
several data sources: Each project execution creates a 
log entry into a database that allows tracing individual 
executions and provides historical diagnosis. Second, 
a graphical user interface to design, test and debug 
a rule project. It provides access to one or several 
RulesXpert engines running in the background and 
allows publishing a rule project to the service engine 
while continuously monitoring that execution. The 
main purpose for the designer is to do off-line experi-
ments until the desired logic is captured (Fig.  4). 
Before a rule is published to the scheduler the rule 
can be executed on historic data to evaluate the logic 
on past process phenomena.

The platform comes as a data source–agnostic rule 
engine by default. The definition of the nature of the 
data sources (one or several) is implemented via exten-
sions or plugins that can be dynamically loaded into 
the RulesXpert designer and engine. This guarantees 
a high degree of flexibility regarding the choice of 
data source (e.g., SQL database, data historian, OPC 
UA), such that plugins can be developed to fulfill very 
specific requirements. RulesXpert provides a set of 
generic rule blocks by default, which can be further 
enriched using the same concept of plugins. This 
allows developing plugins adding tailor-made rule 

blocks required by specific maintenance scenarios. 
By using the toolbox pane, the engineer can choose 
between a various set of rule blocks. They can be 
moved by “drag-and-drop” onto the diagram in order 
to set up logical flow charts. The list of available func-
tion blocks can be extended by loading plugins and 
importing more advanced or tailor-made rule blocks 
into the system.

The no-code platform can also deploy machine 
learning models generated using AIXpert (see sec-
tion above) or using custom machine-learning models 
and scripts developed in Python or R. When querying 
a model, data from variables of the rule project is 
sent to the model and the returned results are again 
assigned to project variables. As such, the external 
models can be used as conventional rule blocks in a 
control flow. This allows for security mechanisms to 
be implemented around machine-learning models to 
control either which model is triggered based on the 
system condition or to cross-check the output in case 
of unusual prediction values.

A major advantage at the same time is that logics 
can be validated at different points in time, e.g., on 
historical data. A time marker defines the current 
time for the rule project. The main benefit of this 
timeline is the possibility to jump into past events in 
order to understand, debug step by step and improve 
the logic. If, for example, an error occurred in the 

Graphical user interface of the no-code platform RulesXpert and its key features based on the requirements R-B1 and R-B2.

Figure 4
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past that a rule logic would like to predict in the 
future, the engineer can jump back to the past and 
validate the rule. If the engineer is satisfied with 
the rule design, he can publish the rule project on a 
RulesXpert service engine. The engine will execute 
the project cyclically on real-time production data or 
can be triggered on event from any other application. 
A scheduler displays all rule projects that have been 
published on the RulesXpert engine.

Applying Machine Learning With AIXpert — AIXpert is 
a module according to requirement R-B3 in order to 
apply machine learning without advanced knowledge 
or specialized skills. The engineer can intuitively train 
models for failure predictions or apply pattern recog-
nition, e.g., to detect well-known equipment failures. 
Trained models can be easily integrated as a rule 
block in RulesXpert to execute the model on live data.

Pattern detection is one of the key features that can 
help the engineer to label essential features in the 
data, combine them across different signals and link 
a set of patterns to specific failures. The goal of the 
development was to enable advanced pattern detec-
tion with machine learning which cannot be easily 
described with rules. In the hands of an experienced 
engineer, these algorithms can provide solutions to 
difficult problems and do not require knowledge 
about the algorithm itself. In a first step, the engineer 
selects a univariate pattern in a time series and assign 
a label to it. This functionality allows manual labeling 
of abnormalities in sensor signals. To test and evalu-
ate pattern detection directly on historical data, they 
will run a set of detection algorithms (e.g., Dynamic 
Time Wrapping, Euclidian, SFATrie). It will help to 
find the same phenomena in the past, to label histori-
cal data sets and draw conclusions from the history. 
The trained algorithm can be exported afterwards as 
a rule block for its deployment in RulesXpert (Fig. 5).

Once the step is done, the engineer can also, in a 
second round, use the historic data and the created 
labels as an input for another algorithm, which could 
be dedicated for root-cause analysis. This facilitates 
the identification of causes and prediction of failures. 
The engineer can, depending on their knowledge, 
either configure the prediction model structure or 
follow an automatic approach to let AIXpert automate 
the training with the help of a dedicated algorithm 
searching for the best neural network architecture 
and results. Following the manual learning, neural 
networks are defined layer by layer, meaning by speci-
fying the type of layer (e.g., Feed Forward, Linear, 
GRU, LSTM, RNN), the activation function (e.g., 
Linear, sigmoid, SinE, TanH, Lecun, TanH) and the 
number of neurons of that layer. The second option 
is known as automated machine learning (AutoML). 
The most appropriate architecture will be chosen 
automatically and an automatic overfitting detection 

considers the number of consecutive rounds where 
the loss function in the test data set has a positive 
slope.

Finally, the engineer can export the trained model 
for live deployment in production with RulesXpert. 
The engineer has the following advantages with deploy-
ing machine-learning models within RulesXpert:

	 •	One click from research to industrialization: 
Machine-learning models can be transferred 
directly from the development environment 
into production to support decision-making on 
live data.

	 •	In-depth validation: Validation by an experi-
enced engineer is important to ensure accep-
tance by using black-box models. RulesXpert 
allows a detailed model validation by exploiting 
the full range of functionalities mentioned 
earlier.

	 •	Scaling and mapping to other data sets: Once 
a model is trained for a particular use case, it 
can immediately be tested with other data sets 
to scale it to similar cases.

	 •	Combination of white- and black-box approach: 
While RulesXpert follows the classical white-
box approach and AI models are termed as a 
black box, the mix of both is particularly pow-
erful. Well-defined rule logics can be gradually 
enriched with advanced algorithms and are not 
being replaced by pure black boxes.

	 •	Combination of several machine-learning mod-
els: In some cases, only one model but also a set 
of models may be helpful to detect anomalies. A 
combination of defined patterns may give bet-
ter hints or predictions than a single model.

Extracted knowledge can either be stored, visual-
ized on dashboards, integrated in existing CMMS 
systems or shared via reports. A reporting plugin 
within RulesXpert also allows, for example, generat-
ing condition-based reports based on templates, rule 
project variables and tabular data. Furthermore, the 
module BIXpert (Fig. 3) allows the engineer to build 
own dashboards on a web-based user interface. A set 
of industrial, customizable panels have been devel-
oped in order to avoid coding.

Examples Out of the Ironmaking Industry 

The following section provides a brief insight into 
some use cases for CbM on ironmaking technologies. 
The implementation is based on the key technologies 
mentioned above and has been driven by the expe-
rienced maintenance and process engineers. The 
blast furnace casthouse machines and Bell Less Top 
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charging system are taken as examples in the follow-
ing sections.

Condition and Performance Monitoring for Casthouse 
Machines1,8 — The analysis of casthouse machinery 
data gives a precise insight into the tapping process 
itself and how the equipment is being used. KPIs such 
as the number of casts per day or the time between 
two casts can also be determined by other methods, 
however more advanced insights such as the actual 
length of the taphole or the actual clay volume being 
injected will provide a new level of information to the 
operator. The observation of various process values 
(e.g., taphole length, used clay volume, time between 
two tapping operations, air inclusions in the taphole 
channel) helps to give guidance to the operating 
personnel. The precise determination of the taphole 
length can be used, for example, to give advice to the 
operator about the optimum amount of clay to be 
injected. This value can be directly applied through 
using the equipment in automatic mode. A set of 
advanced KPIs and phenomena detection further-
more optimizes the drilling and plugging processes 
(e.g., the duration of the drilling processes, the effec-
tive use of the hammer unit or operational reliability 
of the blast furnace, consumables used over time). 
The use of historical data is particularly helpful in 
this context.

The condition and performance monitoring 
includes furthermore the monitoring of machine 
functionalities (e.g., long-term changes of parameters 

such as slewing pressures) and the monitoring of the 
operating time of main components (e.g., hammer 
unit, cylinder and motors). With the hammer and 
rotation motor being the key components of hydraulic 
taphole openers, it is crucial to monitor their opera-
tion. A high proportion of “drilling without hammer” 
in the “total drilling time,” for example, shows that 
the use of the hammer is limited to the hardest part 
of the taphole. These parameters need to be closely 
monitored together with the total drilling time of the 
taphole opening, as the latter has to be kept within 
acceptable limits for a reliable and safe blast furnace 
operation.

Finally, the advanced monitoring will extend the 
knowledge for operation and maintenance bench-
marking, e.g., between different equipment setpoints, 
tapholes or shifts. Comparing performance data 
between machines at different tapholes, different 
blast furnaces or different production sites can 
either detect local improvement potential or con-
firm the competitiveness of the individual operation. 
Benchmarking as part of the condition and perfor-
mance monitoring is a valuable tool for optimizing 
equipment performance. Semantic descriptions, as 
mentioned in requirement R-A2, have proved to be 
fundamental and useful for this step.

The advanced data analysis is also dependent on 
the feedback from operating personnel. According 
to the successful implementation of the requirement 
R-A4, troubleshooting, on the one hand, it is now no 
longer limited to the personnel on site and feedback 

Graphical user interface of AIXpert and workflow for the use of pattern detection.

Figure 5
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can be directly integrated by the engineers to enrich 
the system with more knowledge.

Condition and Performance Monitoring for Bell Less Top® 
Charging System — The condition and performance 
monitoring system is a result of efforts aiming to 
continuously increase availability and ensure optimal 
performance of the Bell Less Top (BLT) equipment. 
The system is based on Paul Wurth’s experience as an 
OEM in the field of blast furnace charging systems. 
Based on the integrated knowledge of experienced 
engineers, the system applies signal processing to 
evaluate equipment behavior. The main objective is 
to provide the ability for customers to improve their 
understanding of equipment state autonomously and 
to provide a solution as a strategic component for 
increasing blast furnace top charging system availabil-
ity and reliability. This includes, among others:

	 •	The verification of the valve opening/closing 
times for all vales, e.g., the upper and lower 
seal vales, the material gate, and the equalizing 
valves.

	 •	The detection of erroneous simultaneous valve 
openings (i.e., BLT in manual mode) which can 
cause excess temperatures in the valve actua-
tion unit or even material hanging in the hop-
per due to gas backflow from the blast furnace.

	 •	The validation of the material gate operations 
(actual vs. setpoint, angle vs. flowrate) since the 
decrease in the opening angle during similar 
flowrates can indicate wear of the lower mate-
rial gate.

	 •	The verification of the correct pressurization 
and depressurization of the hoppers.

	 •	The monitoring of all relevant chute transmis-
sion gearbox (CTG) data (temperatures, cur-
rent, power, vibration, positioning of chute, 
cooling water flowrates, etc.) and the idle 
rotation current to validate the mechanical 
state. This also includes the monitoring and 
prediction of the main rotation bearing condi-
tion using vibration analysis, temperature and 
rotation current as well as calculations for the 
cooling water consumption, e.g., by enumerat-
ing water makeup cycles, and for the emergency 
cooling power.

RulesXpert makes it possible to capture and digitize 
the intricacies of human expertise. It is an integral 
part of condition monitoring which allows com-
bining expert knowledge with data-driven insights. 
Additional rule logics can be integrated either by 
the equipment supplier or by the operator itself and 
allow the system to grow over time. This system acts 
as a knowledge base for process and maintenance 

engineers and contributes to the evolution of equip-
ment and process monitoring.

Conclusions and Summary 

The industrial sector needs to reduce the cost of 
operations, synchronize inventory management and 
efficiently organize personnel and equipment.2 Data 
provides insight on the equipment behavior in order 
to avoid inappropriate use and to identify required 
maintenance actions based on the insights obtained.

In order to extract valuable knowledge for mainte-
nance optimizations, a technology kit for engineers 
has been developed by Paul Wurth. It allows empiri-
cal knowledge that has been acquired over decades 
to be digitized and shared. Process and maintenance 
knowledge can be captured, stored and shared in 
order to create new powerful services and solutions for 
equipment and plants. The tool kit includes a module 
to aggregate and store data from production facili-
ties, the module RulesXpert as the core environment 
for user-specific and knowledge-based rule develop-
ment, the module AIXpert to train machine-learning 
models that can be integrated into the rules, and the 
module BIXpert to build web-based dashboards to 
visualize and share the results.

Based on Paul Wurth’s experience as an OEM in 
the field of blast furnace charging systems, a wide 
set of solutions have been developed to continuously 
increase availability and ensure optimal performance 
and maintenance of ironmaking technologies. The 
paper has given a small, exemplary insight into the 
condition and performance monitoring of tapping 
machines and the Bell Less Top Charging System.
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