
Digital technologies are 
transforming industry at all 

levels. Steel has the opportunity 
to lead all heavy industries as an 

early adopter of specific digital 
technologies to improve our 

sustainability and competitiveness. 
This column is part of AIST’s 

strategy to become the epicenter 
for steel’s digital transformation, by 

providing a variety of platforms to 
showcase and disseminate Industry 

4.0 knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.
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Digital Optimization of Refractory Maintenance

In steelmaking, refractory mate-
rial is in use where structures are 
exposed to high temperatures, in 
particular where metal is in liquid 
phase, e.g., furnaces, ladles, torpedo 
cars and molds.1 In furnaces, a lin-
ing of refractory bricks protects the 
vessel hull from mechanical stress 
and from direct contact with its mol-
ten content. Due to abrasion, the 
lining wears over time and needs 
to be replaced before it reaches a 
critical thickness in order to prevent 
the vessel from damage or a hull 
breakthrough in worst case. In a 
furnace, particular areas underlie 
higher stress and therefore are worn 
out more rapidly than others. These 
areas, referred to as hot spots, are 
repaired from time to time, in order 
to achieve a balanced refractory 
brick thickness and subsequently 
to extend the life cycle of a lin-
ing. Since refractory maintenance 
usually means an interruption of 
normal operation and therefore a 
productivity loss, optimizing the 
maintenance procedure and sched-
ule can help to minimize refrac-
tory cost and operational downtime. 
Usually, maintenance is scheduled 
based on experience and opera-
tional constraints. This work aims 
to provide data-driven approach-
es that are agnostic to subjective 

opinion. Methods of direct and indi-
rect monitoring of the refractory 
status are addressed, predicting the 
remaining life of the lining and 
estimating the effect of gunning 
repair. Furthermore, approaches to 
advising a maintenance schedule 
based on historical data records are 
discussed. This work concentrates 
on maintenance of a basic oxygen 
furnace (BOF). Nevertheless, the 
presented concepts can be adapt-
ed to other vessel types, given the 
required process and measurement 
data. Fig. 1 gives an overview of 
the data processing chain discussed 
in detail in the remainder of this 
paper.

The depicted data process-
ing chain consists of five stages. 
In the first stage, the raw data is 
loaded from different sources, i.e., 
process data, lining measurements 
and maintenance recordings. The 
raw data is then pre-processed, i.e., 
cleaned, filtered, aligned and aggre-
gated, and subsequently merged 
into a data set that contains the rel-
evant information for model build-
ing. In the modeling stage, relation-
ships between input (e.g., process 
parameters) and output data (e.g., 
thickness measurements) are estab-
lished. In the final stage, these mod-
els are utilized for inference, e.g., for 
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predicting refractory wear or proposing maintenance 
activities.

The maintenance advisory strategies presented in 
this work are built upon the concepts exploited on 
data of an electric arc furnace (EAF).2 The refractory 
wear model design describing the relation of process 
parameters and decrease of lining thickness was 
previously investigated for a Ruhrstahl-Heraeus (RH) 
degasser in Reference 3.

Data Sources 

Process Data — Process parameters such as temperatures, 
consumptions, durations and chemical composition 

additions are recorded on a per-heat basis. Usually, 
these process parameters require pre-processing and 
data cleansing.4 The most important parameters with 
influence on refractory wear are either selected by 
process experts or determined automatically through 
a feature selection stage.

Measurement Data — Measurements of the lining surface 
are taken in irregular intervals. The data is usually 
provided as point clouds in cylindric coordinates with 
origin at the measurement device’s position. For each 
scanned surface point, the corresponding lining 
thickness is provided and is calculated from a static 
model of the vessel shell. The precision and there-
fore the reliability of laser measurements often suffer 

from inaccurate positioning of 
the scanning device and of opti-
cal disturbance (e.g., smoke and 
dust). Thus, appropriate correc-
tions and data filtering are often 
necessary to improve the data 
quality. Fig. 2 shows a laser scan in 
the style of a settlement drawing.

Maintenance Data — Maintenance 
data is provided as the amount 
— i.e., the mass in kg — of gun-
ning material applied to a speci-
fied area, together with the heat 
number to indicate when the 
maintenance was performed. 
Further parameters such as mate-
rial grade, feed pressure, and pro-
portion of water and dry mass 
were not available for this work, 
despite the assumption of a nota-
ble influence of these parameters 
on maintenance efficiency. Fig. 3 
shows gunning events and aver-
age gunning mass over intervals 
of 10 heats together with lining 
thickness measurements for a 
single hot spot. Note that there 
is no intuitively recognizable rela-
tion between applied gunning 
amount and lining thickness 
measurements.

Wear Model 

In order to make meaningful sug-
gestions for maintenance opera-
tion, it is crucial to monitor the 
condition of the vessel lining 
and its remaining brick length. 
Ideally, this is subject to precise Gunning mass and thickness measurements.

Figure 3

Basic oxygen furnace (BOF) laser scan visualization.

Figure 2
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and frequent surface scans. If such scans are not avail-
able, estimates of current lining thickness based on a 
refractory wear model can be used as substitute.

Measurement-Based Refractory Monitoring — Ideally, accurate 
measurements are available for every production heat. 
In practice, the lining surface is scanned in irregular 
intervals. As common practice, the scan frequency 
is increased in advanced lining age. Furthermore, 
the measurements are prone to noise and are often 
shifted against each other due to inaccurate position-
ing of the measuring device. This means that the 
available thickness measurements cannot be used in 
their original form and have to undergo filtering and 

correction procedures to increase 
the data reliability.5

Filtering — Unreliable measure-
ments perturb the modeling of 
refractory wear as well as inferring 
maintenance action based on the 
current lining thickness. To over-
come this, data pre-processing 
aims to increase the data qual-
ity and subsequently to achieve a 
higher reliability. Outlying scan 
points are removed in a local 
neighborhood, e.g., by discard-
ing a lower and upper percentile 
of the data in the area of inter-
est. Furthermore, applying aggre-
gation methods such as mean 
or median on the data aims to 

increase the measurement’s robustness against noise. 
Moreover, filtering is also applicable across a series 
of measurements, e.g., by discarding untrustworthy 
scans given their preceding and succeeding measure-
ments, or by applying further smoothing, e.g., by 
using a moving average filter. Fig. 4 depicts raw and 
filtered thickness measurements, where filtering was 
only applied on heat intervals without maintenance 
events. Note that in this case, maintenance is started 
after 4,300 heats.

Linear Fit — An intuitive approach is to assume a linear 
refractory wear behavior. Under this assumption, the 
brick thickness can be determined by taking the aver-

age wear over all available measured inter-
vals, or by using linear regression (i.e., 
fitting a line to the measurement series). 
Therefore, the calculated decrease per 
heat is constant and calculating the cur-
rent remaining brick thickness is straight-
forward by multiplying the wear ratio by 
the number of heats. This approach also 
allows for the extrapolation of the thick-
ness decrease into the future. Such an 
extrapolation is depicted in Fig. 5. At heat 
80, the prediction provides an estimate for 
the remaining treatments (e.g., 144 in this 
case) of an RH degasser.

Wear Prediction Based on Process Parameters 
— A more sophisticated way of estimating 
the refractory wear is to model the wear 
behavior as a function of (available) pro-
cess parameters. Such an approach was 
recently successfully established for an 
RH degasser unit.3 In this approach, a 
linear regression model is used to relate 
process parameters that were pre-selected Wear prediction at heat 80.

Figure 5

Raw and smoothed evolution of lining thickness.

Figure 4
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by experts to the refractory wear 
of neuralgic areas of the vessel’s 
lining. A wear prediction based 
on this model is depicted in 
Fig. 5. Despite the differences 
across liquid steel vessels and 
aggregates from a metallurgical 
point of view, the problem of 
estimating refractory wear is simi-
lar for most vessels from a data 
modeling perspective. Since the 
available data usually consists of 
process parameters and (possibly 
sparse) thickness measurements, 
the approaches and methods 
can be adopted to different ves-
sel types. This work utilizes the 
methodology and findings of the 
RH model for refractory wear pre-
diction. Fig. 6 shows the desired 
lining wear behavior (assumed linear in this example) 
together with the predicted decay of refractory based 
on sampling of production parameters. The gap in 
heats between predicted and desired lining life at the 
level of minimum thickness states the number of addi-
tional heats that is required to reach the target lining 
life (i.e., 1,300 heats in this example).

Production Plan Sampling — Naturally, estimating the 
refractory state based on production parameters 
requires the availability of those parameters for each 
heat where the wear should be determined. This is 
often the case for past heats, but regarding the future, 
the production is often planned on short term and on 
demand, and therefore process parameters of future 
heats might be unavailable. This is true for param-
eters that become available only during or after a heat, 
such as temperature measurements. When it comes 
to predicting the refractory wear to take appropri-
ate maintenance measures in advance, the expected 
production parameters can be estimated statistically. 
This can be achieved by estimating the distribution of 
production data of the past and sampling a series of 
process parameters from this distribution. In practice, 
the individual process parameters are not indepen-
dent, since steel is produced by following particular 

“recipes” in order to achieve the desired steel quality 
for a given heat. Therefore, production plan sampling 
is performed on all parameters simultaneously rather 
than sampling the parameters individually.

Discrete Probability Distribution: In order to identify a finite 
number of representative production data vectors, 
clustering algorithms, such as k-means clustering,6 
can be used to determine groups of heats with similar 
production conditions. Taking the cluster centers, 
i.e., the average over all samples assigned to a cluster, 

results in a set of archetypical production data vectors. 
Each real parameter vector is assigned to the cluster 
with the most similar cluster center. The euclidean 
distance can be taken as similarity measure. A dis-
crete probability distribution is then established by 
counting the number of samples assigned to each 
cluster and their portion with respect to the total 
number of samples. Production data vectors can be 
sampled from such a distribution by fitness propor-
tionate selection such as roulette wheel sampling.7 The 
probability of selecting a cluster center c is given by:

p c
N

N
c Cc

jj

C( ) = ∀ ∈{ }
=∑ 1

1...

(Eq. 1)

where C is the number of clusters and Nc is the 
number of heats assigned to cluster c, respectively. 
Alternatively, data grouping can also be subject to 
given categories instead of statistically determined 
clusters, such as steel product families. The group 
archetype is determined analogously by taking the 
group’s average. Such an approach may be closer to 
reality, but selecting meaningful categories can be a 
challenge on its own, e.g., if there is a large number of 
categories (product families) relative to the available 
data samples.

Continuous Probability Distribution: Sampling sets of pro-
duction parameters from a continuous feature space 
requires knowledge of the underlying — also con-
tinuous — probability distribution to draw the sam-
ples from, e.g., multi-variate Gaussian or a Gaussian 
mixture model,8 where the latter is a combination 
of single multi-variate Gaussians. Fitting a multi-
variate Gaussian to an available set of samples, i.e., 

Desired and predicted refractory wear behavior.

Figure 6
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the production parameters, can be done by using 
the expectation-maximization (EM) algorithm and 
is closely related to k-means clustering. Fig. 7 shows 
production data clusters (dimensionality reduced to 
two dimensions) with their respective centers.

Maintenance Model 

The goal is to determine the effect of maintenance 
measures on extending the lining life. Therefore, 
the relation between the applied amount of gunning 
material and the resulting gain of lining thickness, 
and subsequently the gain of additional heats per 
unit of applied mass, must be determined. This rela-
tion can be set by expert’s knowledge, by empirical 
examination in field trials, or statistically based on 
maintenance records and lining thickness measure-
ments. The latter approach is discussed in the fol-
lowing. Further constraints, such as desired mainte-
nance interval, limitations for the applied amount 
of gunning material or number of heats before first 

gunning can be incorporated as well for 
adaptation to operational conditions and 
requirements.

Impact of Gunning on Lining Wear — Next to 
monitoring the current state of the refrac-
tory lining, it is crucial to know the effect 
of maintenance procedures on the refrac-
tory life. The impact is formulated as the 
ratio of wear reduction over the amount 
of refractory mix per area per heat. Once 
this impact is known, it can be used to 
determine the amount of repair material 
required to close the gap between pre-
dicted and desired number of remaining 
heats in terms of refractory life.

Determining the wear reduction empir-
ically requires accurate thickness measurements. 
Provided that, the average wear reduction can be cal-
culated by dividing the thickness of the gunning layer 
by the number of heats it takes for the applied gun-
ning material to erode and by the applied amount. 
If the measurements lack acceptable accuracy, or 
the wear of gunning material is not explicitly mea-
sured, a more general approach can be applied. The 
maintenance impact is estimated by observing the 
wear behavior over a sequence of heats that contains 
multiple gunning events. Fitting a regression line to 
the available measurements of that sequence gives 
the combined wear of brick and gunning mix. The 
result can potentially state a negative wear rate as well. 
Analogously, the average wear rate is determined for 
a (sufficiently long) series of heats without mainte-
nance. Subtracting this from the combined wear rate 
results in the average effect of maintenance per heat. 
Fig. 8 shows approximated wear rates for sequences 
with and without maintenance measures. The straight 
lines in the segment with no gunning (up to 4,000 
heats) represent a linear regression fitted to the raw 

and smoothed thickness measurements, 
respectively. The nearly horizontal line 
shows the linear regression fit to measure-
ments in the segment where gunning is 
applied. The gradient of the latter rep-
resents a combination of wear rate and 
counteracting gunning effect.

Given an acceptable measurement accu-
racy, as discussed, the gunning consump-
tion can also be incorporated in a wear 
model along with other process param-
eters. In the case of a linear model, the 
gunning effect can be determined direct-
ly from the model weights.

Gunning Probability — In order to reflect 
customary maintenance practice in a rec-
ommendation strategy, the probability of 

Production data clusters.

Figure 7

Approximation of refractory wear with and without maintenance.

Figure 8
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maintenance events during a running campaign is 
estimated. For this purpose, the heat series of a cam-
paign is split into fixed and equal-length segments 
and the frequency of gunning events and average 
amount of gunning material is calculated for every 
segment. The probability of gunning events having 
happened is then assumed to be proportional to a 
cumulative density function (CDF) fitted to the data. 
A sigmoid function can be used as proportional CDF. 
Common curve fitting and optimization methods 
such as least squares are applicable. For facilitating 
the fitting process, the gunning amount of every heat 
is set to be the amount of the slice to which it belongs. 
Alternatively to directly estimating a CDF, a probabil-
ity density function (PDF) such as a normal distribu-
tion can be estimated for the available data. The CDF 
can be subsequently calculated by integrating over 
the PDF. The probability of a maintenance procedure 
given the heat number is illustrated in Fig. 9.

Gunning Plan — Planning maintenance operations 
requires a desired wear behavior to be defined. In 
the simplest case, this requirement is met by provid-
ing a minimum value for the lining thickness and a 
target lifetime (expressed as number of heats). Such 
boundary conditions will assume a desired linear wear 
behavior, but any curve of refractory decay is poten-
tially possible.

Required Gunning Mass — The amount of gunning mix 
m that is required to close the gap between target 
lifetime hl and its current estimate hc can be easily 
calculated. Given the estimated refractory wear rate rt 
for heat t and the counteracting effect of maintenance 
g, the necessary amount of gunning mix for extend-
ing the lining’s life by one heat, and subsequently the 
overall amount to reach the target life is modeled as 
linear relationship, i.e.:

m kg
r mm

g mm kg

tt h

h

c

l

[ ] =
[ ]

[ ]
=∑

/

(Eq. 2)

If a uniform wear rate r is assumed (see the Impact 
of Gunning on Lining Wear section), this simplifies to:

m kg
r mm heat
g mm kg

h h heatsl c[ ] = [ ]
[ ] ∗ −( )[ ]/

/

(Eq. 3)

Gunning Schedule — Once the amount of gunning mate-
rial is estimated, a schedule for maintenance opera-
tions can be established. A direct approach is to use 
historical statistics of maintenance events, e.g., by 
determining the average interval between gunnings 
and the average amount of mix applied per event. By 
incorporating this knowledge of best practice, a sug-
gestion for a reasonable number of gunnings can be 
made.

Gunning Proposal — By combining the approaches dis-
cussed here, i.e., required amount of gunning mix 
(see the Required Gunning Mass section), reason-
able intervals and maintenance probability (see the 
Gunning Probability section), the urgency for mainte-
nance of the current heat can be presented as “traffic 
light” color code, meaning (i) green: no maintenance 
required, (ii) yellow: maintenance should be per-
formed and (iii) red: immediate maintenance action 
is required to fulfill the target lifetime. Fig. 10 shows 
the color-coded gunning urgency and applied gun-
ning amount at every heat.

Furthermore, the amount of gunning mix to be 
used in the next maintenance procedure can be 
proposed. Fig. 11 depicts the processing diagram 

Gunning probability: cumulative density function (CDF) of Gaussian fit (a) and sigmoid fit (b).

Figure 9

(a) (b)
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from determining the current refractory status to 
proposing maintenance measures. The circle nodes 
represent the steps of the algorithm and its inputs are 
stated as rectangles. Green inputs have a data-driven 
or statistical character, where blue inputs represent 
user-defined parameters, to be set as desired. The 
processing scheme consists of four stages. First, the 
current refractory state is determined, either by a 
thickness measurement or by an estimate using a 
wear model. Second, the remaining heats before the 
lining wears to its minimal thickness is predicted, e.g., 
by extrapolation of past wear behavior or by a predic-
tion based on a (sampled) production plan. Third, 
the amount of gunning that is required for reaching 
the target lining life is calculated. In the last stage, a 
schedule for gunning events is proposed.

Fig. 12 shows a gunning proposal during a run-
ning campaign to extend the lining life to the 

desired number of target heats. 
In this example, the proposing 
algorithm is constrained as fol-
lows. Gunning events are allowed 
at a maintenance probability 
of greater than 50%. The gun-
ning urgency is color-coded from 
green for low to red for high 
urgency, respectively. The urgen-
cy is based on an average gunning 
interval of 23 heats (calculated 
from historical data) and weight-
ed by the gunning probability. 
The wear prediction is based on 
clustered production data. The 
gunning intervals are set with a 
small randomness factor around 
the average interval for the sake 
of a more realistic scenario. The 
target lining life is set to 5,100 

heats with a minimum brick length of 100 mm.
The maintenance proposal algorithm shown in 

Fig. 12b states the procedure for calculating a gun-
ning proposal that outputs a series G = {h1, …, 
hg } of gunning events together with the accord-
ing gunning amounts M = {m1, …, mg }. Inputs of 
(future) production parameters X = [xc, …, xl]

T,  
with x =[x1, …, xm]T holding the single production 
parameters, and desired gunning interval D are 
optional. Required parameters are the desired lining 
life hl in heats, the minimum lining thickness lth, the 
refractory wear rate r(x) and the gunning probability 
pg(t) for heat t, (whereas the latter two can also be 
constant, e.g., pg(t) = 1). At every time step (i.e., heat), 
the current lining thickness lt and applied mass mt are 
determined. Subsequently, the lining thickness lk for 
future heats is predicted and the heat hc where the 
lining thickness will hit the minimum brick length 

is determined. From there, the 
number of required additional 
heats H is calculated as the dif-
ference of target number of heats 
hl and hc, followed by the number 
of required gunnings Ng and the 
corresponding gunning events G. 
The gunning amount mg for every 
gunning event is calculated as the 
product of the required mass per 
heat m0 and the gunning interval 
D. The current urgency ut for 
gunning is set as the ratio of the 
number of heats since the last 
gunning event hg and D, scaled 
by pg(t).

Gunning urgency.

Figure 10

Maintenance proposal diagram.

Figure 11
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Conclusion 

This work presents an approach for suggesting main-
tenance operations based on historical data records. 
The individual data sources are described, and pre-
processing steps like data filtering and aggregation 
are discussed. Models for refractory wear and gun-
ning maintenance are developed in order to predict 
refractory wear behavior and to propose adequate 
maintenance activity for reaching the desired lining 
life. Methods for estimating currently unavailable 
data as well as predicting data of future events are pre-
sented. Statistical metrics are used for model building 
as well as incorporating knowledge from best practice 
routines applied in real-world operation. A strategy 
for planning and proposing gunning maintenance 
based on the established models is proposed, where 
both data-driven and user-defined boundary condi-
tions are considered. Future work will include the 
adaptation of the discussed methods to other vessel 
types. Furthermore, setup data and parameters of 
the maintenance procedure can be incorporated to 
improve the maintenance model, as well as investi-
gating the behavior of different compounds of the 
refractory lining. 
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