
Digital technologies are 
transforming industry at all 

levels. Steel has the opportunity 
to lead all heavy industries as an 

early adopter of specific digital 
technologies to improve our 

sustainability and competitiveness. 
This column is part of AIST’s 

strategy to become the epicenter 
for steel’s digital transformation, by 

providing a variety of platforms to 
showcase and disseminate Industry 

4.0 knowledge specific for steel 
manufacturing, from big-picture 

concepts to specific processes.
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Machine Learning for Blast Furnace Productivity Improvement at 
Jindal Steel and Power Angul

Jindal Steel and Power Ltd. (JSPL), a 
major steel producer in India, com-
missioned its first blast furnace, with 
a size of 4,554 m3, in May 2017, at 
its plant located at Angul, Odisha, 
India. This paper will describe 
machine learning (ML)–based com-
putational efforts for improved blast 
furnace productivity, complement-
ing the knowledge of iron and steel 
specialists. A productivity trend for 
the evaluation period is shown in 
Fig. 1. Capacity of the plant went 
from 1.5 MTPA (with a production 
route utilizing direct reduced iron 
(DRI), an electric arc furnace (EAF), 
continuous caster (CC), rolling mill) 
in 2017 to 6 MTPA (utilizing a blast 
furnace (BF), basic oxygen furnace 
(BOF), CC, rolling mill produc-
tion route) at end of the evaluation 
period.

BF processes are influenced by 
many factors, with quite a few of 
them interacting with each other. 
The process is immensely complex. 
Such process complexity in mod-
ern state-of-the-art blast furnaces 
enables higher quality of hot metal; 
however, this complexity can also 
result in patterns of BF behavior 
that become difficult to capture by 
conventional means. In turn, this 
can lead to lower productivity at 
times. It is in this context of hid-
den, intractable and nuanced sourc-
es of furnace behavior and in the 
context of process complexity that 
machine-learning methods become 
a useful device and a vehicle for 
information discovery. Fortunately, 
Industrial Internet of Things (IIoT) 
has enabled modern blast furnaces 
with a large number of continuous 
data streams that can be harnessed 
and exploited to great benefit, as 
this paper will show.

Furnace behavior has been exam-
ined in the past with various statisti-
cal multi-variate (MVA) methods by 
practitioners in the steel industry. 
These statistical methods have been 
around for quite some time and 
to a reasonable degree they have 
provided benefit to the consumer 
of this information. The theory and 
application for design of experi-
ments (DOE), standard regres-
sion and other statistical methods 
are well developed, and it would 
be superfluous to address it here. 
However, there are limitations to 
these traditional methods when (1) 
the number of features (variables) 
is large, (2) many of these features 
are correlated, (3) there are deep 
interactions among many features 
and (4) the number of data points is 
small relative to the number of fea-
tures. In these limiting conditions, 
ML methods play an important role 
in improving productivity and qual-
ity in steel manufacturing.

Although this paper will refer to 
the specifics of BF processes, meth-
ods and algorithms employed in 
this analysis should be applicable 
throughout the steel plant. And 
while data science concepts are used 
quite extensively in this analysis, 
graphical devices are deliberately 
relied on to highlight findings, pos-
sibly at the expense of some math-
ematical rigor, but of more use to 
the practitioner in the steel indus-
try. Machine-learning methods have 
come of age and it is believed that 
ML, together with more sophisti-
cated methods such as deep learn-
ing, will be employed routinely in 
all aspects of steel manufacturing, 
leading to simultaneous increases in 
productivity and quality.
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Summary 

From the models utilized, it was found that permeabil-
ity (K) of the blast furnace plays a key role. Of course, 
the importance of K has been known since the advent 
of blast furnaces; however, since there are no direct 
measurements possible inside the column of a blast 
furnace, quantification has been lacking. Instead, 
historically, practitioners have resorted to indirect 
extrapolation from other measures to compute the 
implied value of K. Machine learning allows us to 
discover all the complex associations of K to a finer 
degree than was otherwise and previously possible.

Permeability as Proxy Variable — Empirical evidence has 
been found that not only does permeability K play 
a pivotal role in influencing productivity, but in fact 
it provides a pathway for many other variables to 
influence the process. In other words, K acts like a 
proxy variable for productivity. This empirical find-
ing, namely K acting as a modulating variable, is not 
entirely surprising, given that movement of gases in 
the furnace has been implicated in various physics-
based models as the key factor, and in fact, has been 
the subject of much modeling with computational 
fluid dynamics (CFD) and other methods.1

Alternative Model Representations — At the outset, the 
authors note and distinguish between non-parametric 
empirical discovery of effects (through ML in this 
case) and physics-based models. In this paper, the 
focus is on non-parametric empirical discovery (also 
called model-less representation). All discoveries must 
eventually be explained through physics for root 
cause and corrective action and improvement; how-
ever, purely for predictive purposes, it is not necessary 
to know the physics but only that the model has high 

confidence and is predictive enough. This is a philo-
sophical point, and outside the scope of this paper; 
however, it is mentioned only to bring to the attention 
of the reader that these philosophical renderings 
can influence the interpretation of results. The term 
physics is used as a comprehensive term that includes 
physics, metallurgy, chemistry, mechanical and any 
other related discipline that describes phenomena in 
a parametric model. 

Variables of Importance — Among the variables of consid-
erable influence are coke strength, ash and moisture. 
Less expectedly, the amount of lime in sinter, as part 
of the charge materials mix, has been found to play 
a key role in productivity. It is reasonable to assume 
that since iron is the payload in sinter as the element 
of interest, a higher percentage of iron relative to 
other components would be desirable. Instead, it has 
been found that an optimum amount of lime must 
be present for higher productivity; this comes at the 
expense of reduced fraction of iron, which is counter-
intuitive. This does not mean that higher lime percent 
is a desirable feature but rather the data (restrictively) 
suggests only that an optimum level of lime percent is 
necessary for a given quality of sinter to extract higher 
productivity. Alternatively, there must be balance in 
sinter chemistry (fluxed enough for meeting chemi-
cal requirements and physical strength). ML allowed 
for the desired CaO addition level required for differ-
ent kinds of raw material mix in a sinter plant to be 
extracted.

It is believed that this phenomenon results from 
the binding properties of lime,2 which increases the 
strength of sinter and prevents mechanical degrada-
tion in the blast furnace. Mechanical degradation 
results in smaller particles (fines) which effectively 
block the free movement of gas in the furnace. All of 

Productivity trend in the evaluation period for the blast furnace at the Jindal Steel and Power Ltd. plant at Angul, Odisha, India.

Figure 1

http://www.aist.org
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this relates to K, the permeability metric, confirming 
once more the pivotal role that permeability plays in 
improving productivity. The optimum percentage of 
lime depends on the quality of sinter, so that higher-
quality sinter, which is less prone to mechanical 
degradation, requires less lime percent and therefore 
delivers higher productivity, but, for a given level of 
sinter mechanical quality, an optimum percentage of 
lime is required for higher productivity. More on this 
in the Results and Discussion section.

The top few variables of importance (varimps) are 
shown in Fig. 2 and the role of these varimps and 
other variables emerging out of the ML model will be 
discussed. The table suggests that impairment in one 
of these inputs due to incoming quality can be com-
pensated for by better quality in the other metrics to 
some extent — if the total permeability can effectively 
be maintained at reasonably good levels.

Data Set Description 

Data set measurements were recorded in a stable eval-
uation period, where there were no major unsched-
uled or scheduled downtimes. Five different kinds 
of data sets are extracted and processed — tap/cast, 
charge, quality, L2 and burden distribution.

Data Aggregation — Hot metal output in the evaluation 
period is computed for every hour and recorded as 
equivalent daily production (EDP) in tons/day, which 
equates to production for each hour multiplied by 
24. This is shown in Fig. 3; the left figure showing 
a snippet of time trend along with one-sided expo-
nentially weighted moving average, the figure on the 
right showing the density distribution. ma_0 refers to 
the raw quantity of production for the specific hour; 

clearly this is a very noisy signal — some of the noise 
is due to a lapse in accurate production accounting for 
each tap event. Each individual tap or casting output 
can be undercounted or overcounted to some degree, 
but when combined over several taps or combined 
over several hours, the accounting errors disappear 
because the undercounting or overcounting output in 
each tap event must be accounted for at some point. 
ema_8 in the figure on the right represents the mean 
of hot metal output exponentially weighted 8 hours in 
each direction while the left figure shows a one-sided 
ema_8.

Model accuracy and predictiveness depend on 
capturing most of the temporal signal and discard-
ing most of the noise. Increasing averaging length 
decreases the signal by decreasing the captured gran-
ularity of temporal variation but it also reduces the 
noise coming from the raw signal. Modeling was per-
formed with different levels of EDP averaging length 
and two-sided 8 hours ema was found to offer the 
best model accuracy. Consistent with that, the figure 
on the right in Fig. 3 visually suggests that noise from 
accounting is largely eliminated with a time averag-
ing length of 8 hours with no fat tails remaining. The 
distribution shrinks at a much slower rate beyond this. 
Therefore ema_8 is chosen as the “target” variable 
(the variable to maximize).

Output by Taphole — Various hot metal output metrics 
are shown in Fig. 4 as part of exploratory analysis 
to understand the bearings of the data set, which 
is usually the first step before any ML exercise is 
undertaken. Fig. 4 defines the characteristics of this 
furnace by taphole; every furnace will have its own 
characteristics.

Raw materials (charges) are continuously fed into 
the furnace and its measurement is done on the weigh 

Top five key features (variables) in the machine-learning (ML) model that describe productivity of the blast furnace.

Figure 2

http://www.aist.org
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hoppers on a pre-set schedule. Some of the raw mate-
rials such as sinter and coke are generated on campus 
in the integrated steel plant at JSPL while some other 
materials like pellets are imported into the plant. 
Prime coke consumption (a key indicator of blast 
furnace economics) was lowered to almost 350 metric 
tons/day over the 18-month commissioning and there 
remains room to make further improvements in this 
metric: all this while hot metal output increased.

Sampling Adequacy — Quality parameters for raw materi-
als are measured at the stockhouse at various intervals. 
Some parameters are measured up to twice a shift 
while others may be measured once a day or once 
every two days. Parameters that have an adequate sam-
pling rate were chosen. The data table constructed 
at a clocking index of 1 hour records the average 
value of quality parameters and blast furnace process 

parameters (as measured by L2) for every hour, while 
charge data is summed for every hour. An 8-hour shift, 
therefore, has eight measurement opportunities so 
that parameters that are measured once a shift will 
rank 12.5% (=1/8) on the y axis in Fig. 5; likewise, 
about 4.2% (1/24) on the y axis for measurements 
that are taken once a day.

Out of 182 quality features, about 41% of them that 
are sampled at a frequency of once a day or better are 
selected, as shown in Fig. 5, and for these features, 
values for the remaining hours are imputed based on 

“down fill” methodology — i.e., previous values stay 
valid until the new measurement is made. Thirty-two 
L2 parameters describing blast furnace measure-
ments were included in the source in the analytics 
table e.g., top pressure, hot blast temperature, RAFT, 
permeability, etc.

Equivalent daily production (EDP) by hour time trend – snippet (a) and EDP distribution for various moving averages (b).

Figure 3

(a)	
(b)

Various hot metal output metrics by taphole, indicating the characteristics of this furnace.

Figure 4
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Analytics Methodology 

Unit of Production — Hot metal generation in the blast 
furnace is a continuous process; all statistics, there-
fore, are generally quoted per unit time. Tapping 
events (reflecting the output variable, also called the 
supervising variable) are, however, asynchronous; one 
or more of the four tapholes could be open in each of 
the hours in the data set. There are two ways in which 
a raw data set can be prepared for mining (a) each tap 
event as a unit of production or (b) each hour of pro-
duction as a unit of production. Both methods were 
used, but the following discussion refers to the second 
method because it provided better accuracy.

Lookback Period — To build a mining-ready table, with 
a target variable (hot metal output) and predictors, 
each hour must contain the output for that hour and 
the inputs that supplied into that output hour during 

the descend and residence time, X, of the materials in 
the furnace column. It was suspected that X is in the 
range of 8 hours based on prior domain knowledge of 
blast furnaces; perhaps not surprisingly it was found 
X = 8 hours provides the best accuracy in an unbiased 
ML model, confirming prior belief. It was noted, how-
ever, that model accuracy drops off sharply outside ±2 
hours of X = 8. The word “unbiased” is used to mean 
without the assistance of a physics-based model. This, 
of course, does not mean that there is not a physics-
based model (all physical processes do eventually) 
but only that the discovery methods used here are 
independent of it.

Analytics Platform and Algorithms — R was used as the plat-
form of choice for algorithmic analysis,3 although 
python would be a perfectly good choice as well. Both 
these platforms are free, and both offer a wide vari-
ety of state-of-the-art machine-learning algorithms 
through packages. Several of these algorithms under 
the supervised and unsupervised learning paradigm 
are employed in this analysis to model productivity 
and permeability of the blast furnace. Xgboost algo-
rithm4 showed the best promise in overall accuracy 
and effectiveness, which is not surprising, given the 
versatility of this algorithm accommodating a multi-
tude of data set conditions including high degree of 
correlation between many variables. Earth algorithm 
is also utilized; however, this algorithm requires a 
thinned data set where the variables have been pared 
down to a more manageable smaller number of less 
correlated variables. The output of xgboost is fed 
to earth algorithm; the advantage in earth is that it 
allows extraction and visualization of interactions 
which is one of the objectives in this exercise.

In addition to the above algorithms, other tech-
niques were employed, such as principal components 

regression, principal compo-
nent analysis, hierarchical clus-
tering and others. More details 
on the techniques themselves 
is widely available on the inter-
net with a simple search.

All data is temporally 
aligned to each production 
unit, so that each row in the 
analytics table, corresponding 
to an hour of production, has 
columns that describe the fea-
ture values associated with this 
production unit. All features 
for this unit of production are 
synchronized with a lookback 
period of several hours due to 
the descend time of material in 
the blast furnace column that Unitization of hot metal output quantity using each hour as a unit. A lookback period of 

8 hours is found optimal.

Figure 6

Selection of quality parameters based on sampling 
adequacy. (Data points have been jittered for visibility.)

Figure 5
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affect the production and quality in each hour of tap 
output, as shown in Fig. 6.

Target Variable — The productivity of the blast furnace  is 
defined before it is modeled. For analytics purposes, 
the authors use the instantaneous value of produc-
tion, an instant being an hour in this case, since an 
hour is the smallest aggregated unit of production 
across all metrics. This hourly production is normal-
ized to a 24-hour period since the plant is used to 
assessing production in daily units in kilo tons per 
day. This instantaneous value of production is called 
equivalent daily production (EDP). The objective for 
the ML algorithm is to model and maximize EDP or 
more specifically, the exponential moving average 
over 8  hours or ema_8_EDP, defined earlier, as the 
target variable.

Model Overfit Prevention — Next, the issue of regulariza-
tion is addressed to prevent overfitting. State-of-the-
art ML algorithms have the ability to capture every 
fine nuance in the data set, converging to a perfect 
fit with the data in the absence of constraints. But 
this perfectly fit model is also a perfectly bad model. 
This is so because an unconstrained “perfectly fit” 
model includes considerable noise, while the intent 
is to model the signal (hot metal output) and not the 
noise. Inclusion of too much noise in the model is 
called overfit. Two mechanisms are used to safeguard 
against this phenomenon of overfit — test-train sepa-
ration and n-fold cross-validation.

As a first layer of defense against model overfit, 
n-fold cross-validation is used. For eight-fold cross-
validation, the model is built on seven out of eight 
folds in the training set and then measured against 
the remaining eighth fold. This is usually done 
by the algorithms internally and automatically and 
done several times repeatedly, measuring against the 

different folds to prevent overfitting. This prevents 
random noise from influencing the model. However, 
signal variation originating from variables that are 
not explicitly called out in the data set must also be 
mitigated. And this is done by splitting the data set 
into a training subset and test subset.

So, the second layer of defense against model over-
fit is accomplished by splitting the data set into two 
distinct, time-chunked (i.e., not randomly picked) 
sub-data sets in a ratio of 70% training subset and 
30% test subset, or 80%/20%. The model is built on 
the training subset with n-fold cross-validation and 
tested on the remaining members of the data set 
called the test subset. “Training” is data science speak 
for developing a model using ML methods with a class 
of algorithms called supervised learning. Building 
the model on a chunked training subset and testing 
on another chunked subset ensures that the model 
accuracy is tested against unseen data in a different 
time period when the state of unmeasured variables 
is potentially quite different.

In addition to these two methods, there are boost-
ing parameters that the user can and should optimize, 
for example the number of rounds of iteration and 
the learning rate in each iteration. A discussion on 
these and other optimizations can be found on the 
xgboost website.4

Results and Discussion 

Employing the methodology as described earlier, an 
ML model is developed for EDP with ~115 predictors 
or features — the predictors coming from L2, qual-
ity and charge data. The model is shown compared 
against actual data in Fig. 7, achieving a cross-validat-
ed and regularized model with r-square of ~0.87 for 
the test sub-data set. Out of 153 million possible terms, 

ML model vs. actual instantaneous ema_8 EDP on test subset for best model score (a) and interaction depth = 5 provides the 
best model score (b).

Figure 7

(a)	 (b)
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there are only 13 terms that are necessary to explain 
the variance in the data; these terms carry eight fea-
tures (called variables of importance or varimps) with 
four-way interactions. The top five of these variables 
of importance which were listed in Fig. 2 showed that 
K is the most important variable and literature sup-
ports this find. That K ranks at the top of the list is not 
altogether surprising and is a testament to its role as a 
pathway or a proxy variable; the ML model now allows 
one to quantify its impact more precisely.

Interaction Depth — The blast furnace is a complex pro-
cess lending itself to deep interactions, which simply 
means several variables act together to influence K 
and as a result influence hot metal output, so that 
when some conditions in several variables are met 
simultaneously, the hot metal output is impacted 
more severely. The overall depth of these interactions 
can in fact be measured and it is shown in Fig. 7. In 
fact, one of the reasons why traditional methods of 
statistical analysis and model representation fail is 
because of significant deep interactions that remain 
unaccounted within a vast space of possible interac-
tions. Fig. 7 suggests that at least three-way cross-inter-
actions are necessary to include in the model for suf-
ficient predictiveness and up to five-way interactions. 
Including higher than five-way interactions offers no 
advantage; and adding more than six-way interactions 
begins to catch too much noise in training to degrade 
the model severely when measured against the test 
subset. It has been concluded that the blast furnace 
process is represented ideally by a five-deep interac-
tion and sufficiently by a three-deep interaction.

With 115 predictors and a five-level deep interac-
tion, this gives more than 150 million possibilities. 

Of course, only a handful of terms and interactions 
are meaningful — but at the outset, in an unbiased 
model, it is not known which of these are relevant. If 
a standard non-linear regression model is used that 
includes cross-terms, with these many coefficients, an 
equivalent number of data points is required and typi-
cally 10 times larger for an adequate confidence. This 
would require 1.5 billion points. Clearly, that much 
data is not available, or technically speaking, the data 
set is not powered. Additionally, curse of dimensional-
ity limits discovery in high-dimensional sparse spaces. 
All of this means that an optimized way of extracting 
variables of importance that influence EDP is neces-
sary and all of this from 4,400 data points in the data 
set. ML is that optimized method that overcomes the 
limitations emerging from a vast “naïve” space that 
includes interactions.

Top Variable — Fig. 8 shows permeability and EDP as a 
function of lime percentage in sinter. The result is 
somewhat counterintuitive; it is a reasonable expecta-
tion that a higher percentage of lime will result in 
lower production because lime in sinter reduces the 
iron content. However, it turns out that K continues 
to drop (i.e., permeability continues to increase) 
and EDP continues to increase as lime percentage 
increases from 10.5% peaking at 11.8%. It is believed 
this is due to the binding action of lime in sinter,2 
allowing it to stay intact in the blast furnace by 
increasing the strength of sinter. Sinter with higher 
strength is preferable because this requires less lime 
percentage to enhance binding and inhibit mechani-
cal degradation; but for sinter of a given quality, there 
is an optimum level of lime percentage to maximize 
permeability and hot metal output.

Sinter lime effect on permeability and production. (Lower K = higher permeability.)

Figure 8
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Confounding/Causal Inference/Association — An important 
note needs to be made regarding the methodology. 
The data in this analysis is observational and not 
acquired through a designed experiment. It is hard to 
do a designed experiment in blast furnace because of 
the importance in keeping the plant running (down-
times are generally not acceptable in the normal 
course of business). However, drawing conclusions 
from observational data poses some constraints; in 
particular, confounding can be present in the data. 
For example, as the lime percentage in sinter changed 
in the data set at various time segments in the data 
set, one should ask whether some other parameter 
also changed to such a degree at the same time (for 
completely unrelated/independent reasons) such that 
potentially this other parameter could have caused 
the effect noted earlier on permeability and hence on 
EDP. Alternatively, the following questions are posed: 
Is sinter CaO% causally related to EDP and K? Or is it 
merely a non-casual association in the data set?

To answer this, Bayesian thinking and counterfac-
tual analysis are used. The authors examined the 

biggest factor that could potentially be confounded 
temporally with sinter CaO% and be the source 
of the effect. Coke quality is known to be a signifi-
cant contributor to permeability through the M40 
measurement, which is a measure of coke strength. 
Higher M40 implies better mechanical strength of 
coke, which reduces fines in the column; fines act to 
block the free movement of gas by plugging intersti-
tial spaces. To examine the effect noted in Fig. 8, and 
possible confounding, the next section compares a 
time period when permeability and production were 
the highest against a time period when they were the 
lowest during the evaluation period.

Good vs. Bad Production Periods — In addition to exam-
ining the confounding noted earlier, good vs. bad 
(period) analysis — also called GVB analysis, serves 
another purpose. Metallurgical and other specialty 
engineers know the domain extremely well but may 
have only a passing familiarity with data science; this 
demographic can derive immense benefit from GVB 
visual charts, making it easier to disseminate than 

Good vs. bad (GVB) univariate charts for EDP, K and sinter CaO% and coke M40 for good production high-permeability period 
(green) and bad production low-permeability period (red). While M40 explains part of this difference, sinter CaO% explains more.

Figure 9

http://www.aist.org
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more complex and esoteric ML interpretations. So, 
the key varimps are shown in two extreme conditions 
in Fig. 9 — a period where the permeability was at its 
highest, i.e., K was its lowest (in green) and a period 
where the opposite was true (in red). Of course, as 
stated earlier, the ML model (Fig. 7) includes complex 
interactions that are not visible in Fig. 9, but univari-
ate charts (one variable at a time) are easy to dissemi-
nate and therefore still retain significance in practical 
applications even when complex ML methods are 
used to develop the production model.

Fig. 9 shows that while M40 explains part of the 
difference in good vs. bad periods, as expected, an 
equally influencing factor in the model is sinter 
CaO%, as visible in the starkly separate distributions. 
To examine counterfactually, the effect of M40 is 
controlled by restricting it to less than 86.5, in Fig. 10, 
effectively examining the subset of data where coke 
strength was bad in both good and bad periods of 
permeability. With this additional condition control-
ling for the effect of M40, the sinter CaO% difference 
in distributions is even more stark! M40 and sinter 
CaO% independently influence permeability such 
that if permeability is impaired due to incoming qual-
ity problems in coke, then a higher effective sinter 
strength can partially compensate for it.

Effects of other varimps emerging from the model, 
such as coke moisture and ash and several others, are 
as expected based on prior domain knowledge; there-
fore, discussion of it is not included here. Instead, the 
focus is on those areas that add value to the existing 
body of knowledge. An astute reader will want to 
pose the question whether a model with this much 
accuracy as is presented here could have been deter-
mined without invoking ML. The short answer is 

no; among other reasons, not enough data to fit 150 
million coefficients, let alone determine them with a 
high enough confidence. Model accuracy after n-fold 
cross-validation and regularization shown in Fig. 7 
was only achievable through ML and incorporating 
interactions in the model at the right level of depth.

Optimization Criteria — As mentioned earlier, ML has 
distinct advantages over traditional methods of data 
modeling when there are deep interactions among 
many features. As a result, ML models can address 
vast feature spaces. However, this comes at a cost — 
ML models must be updated every so often. Natural 
phenomena do not change over time, of course; how-
ever, the number of possible combinations of inputs 
that impact the output is large and only some of these 
combinations are impacting the process at any given 
time and are therefore included in the model at the 
time it is built.

In general, it is preferred to have minimum com-
plexity models that are above an acceptable ML model 
score. However, increasing the number of terms 
beyond the maximum ML score model could poten-
tially increase the lifetime of the ML model. This is 
somewhat counterintuitive because while increasing 
model width includes more noise, it also allows inclu-
sion of terms that are impaired compared to the stron-
gest terms currently but could well become prominent 
with slight shifts in inputs. In a future data set, it is 
likely that some of these additional terms could be the 
strongest. This wider model that includes more terms 
(and more noise) is preferred by some practitioners to 
extend model lifetime at the expense of a somewhat 
diminished model score while still above a minimum 
level. Most practitioners, though, prefer the highest 

Controlling for the effect of M40 on K and EDP, by restricted to <86.5 in both good period (in green) and bad period (in red). 
The distributions of snt_CaO% for good and bad periods are now even more starkly separate.

Figure 10
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ML model score operating point since model updates 
are getting inexpensive to compute nowadays with 
automation.

Note on Modeling Culture(s) — Lastly, the authors leave 
the reader with a philosophical pondering that Leo 
Breiman raised in the much-quoted paper from 2001.5 
He argued that there are two cultures in what is now 
called the analytics domain — (a) data modeling cul-
ture, for which the term physics-based models in this 
paper has been used and (b) algorithmic modeling 
culture which is the province of ML and deep learn-
ing, etc., but divorced from a physical understanding 
of the process. The authors do not offer a leaning 
in either direction but only suggest that awareness 
of this user bias, and by implication, blind spot(s), is 
helpful in selection of methodologies and even inter-
pretation of results during an advanced analytics exer-
cise, whether addressing an out-of-control condition 
or continuous improvement or real-time prediction of 
production catastrophic events.

Summary and Conclusions 

This paper has shown that productivity improve-
ments in a blast furnace can be meaningfully assisted 
with ML methods with cross-validated and regular-
ized accurate models displaying good reliability. Key 
variables of importance were ranked, scored and 
explained based on physics as well as with algorith-
mic interpretations. It was shown that permeability 
metric (K) acts as a proxy variable for production; in 
turn other variables of importance drive permeability, 
including coke strength, percentage of lime in sinter, 
coke ash and coke moisture, among others. And the 
physical and algorithmic rationale for the counterin-
tuitive finding of CaO% in sinter as one of the vari-
ables of importance was explained.

ML can be used not only for blast furnace produc-
tivity and performance modeling and improvement 
but also by any other department in the steel plant. 
The authors posit that ML can account for the vast 
degree of variability found in blast furnaces around 
the world, thus providing guidance to those that oper-
ate below benchmarks.

The next evolutionary steps in applications of ML 
and deep learning to iron and steel manufacturing 
should include near-real-time applications such as 
early warning signal for blast furnace slip or other 
catastrophic unscheduled events that are immensely 
expensive for the steel plant. While the primary tech-
nology that was exploited in this paper falls under 
the umbrella of supervised learning for continuous 
improvement and process quantification for meeting 
strategic long-term goals, newer methods in unsuper-
vised learning as well as deep learning can be of great 
tactical assistance for production monitoring and 
real-time “imminent failure” detection.
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