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INTRODUCTION 

The accurate prediction of microstructural evolution during hot rolling is critical for achieving target mechanical properties, 
optimizing process parameters, and ensuring product consistency across varying steel grades and mill configurations. 
Traditional metallurgical models, grounded in physical mechanisms such as recrystallization, grain growth, and phase 
transformation kinetics, are instrumental in understanding and simulating hot deformation behavior. However, their 
applicability is often constrained by the need for extensive calibration and their limited adaptability to new alloy systems or 
process routes. This study introduces a novel hybrid modeling framework that integrates physically-based metallurgical models 
with advanced numerical tools and data-driven methodologies, including Artificial Intelligence (AI) techniques. The core of 
this framework is built upon a suite of in-house modeling tools: MicroSim, for austenite evolution; PhasTranSim, for phase 
transformation; and MechPropSim, for mechanical property prediction. These models are designed to interact with industrial 
rolling schedules, capturing complex thermomechanical histories and their influence on final product characteristics.  

A key innovation of the MicroSim model is its capability to simulate the evolution of full austenite grain size distributions, 
rather than mean values, allowing for a more realistic representation of inhomogeneities (both local and through-thickness) 
driven by thermal and strain gradients. This feature is particularly relevant for plate rolling and thick sections, where gradient 
effects are significant. MicroSim has been developed to support a wide range of hot rolling lines, including Plate Mills, Hot 
Strip Mills, Steckel Mills, and long product mills (bars, H-Beams and sections). Recent developments include the integration 
of PhasTranSim, which predicts phase fractions and transformation kinetics during cooling, and MechPropSim, which 
estimates mechanical properties based on microstructure and composition. In this work, MechPropSim is further enhanced 
using symbolic regression algorithms to derive empirical models that link process variables and microstructural features to 
yield strength, enabling greater transparency and transferability compared to traditional black-box machine learning 
approaches. This hybrid modeling approach offers a pathway to intelligent and adaptive rolling mill operations.  

By embedding advanced models into production environments, the framework facilitates predictive control, real-time quality 
assurance, and energy-efficient process design. The convergence of metallurgical knowledge and AI techniques enables robust 
and scalable solutions for modern steelmaking, aligned with the industry's increasing emphasis on digitalization, sustainability, 
and process optimization. 

MICROSTRUCTURAL EVOLUTION MODELING 

The core structure of the modeling framework is built around the MicroSim and PhasTranSim models, supported by an 
integrated thermal module. Together, they enable a detailed simulation of the austenite conditioning during rolling and the 
subsequent phase transformations during cooling, offering a powerful tool for both process optimization and alloy design. In 
Figure 1, the different blocks of the hot rolling modeling software are visualized. The first block, MicroSim, is responsible for 
predicting the evolution of austenite during the process. For this prediction, an initial distribution of austenite grain sizes is 
used, and the microstructural evolution of the different bins in the distribution is considered. The next block, PhasTranSim, 
involves phase transformation calculations. This block calculates when phase transformations occur and outputs the grain size 
and fractions of resulting constituents such as ferrite, pearlite, bainite and/or martensite. Finally, the latest addition to the 
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software is MechPropSim, which predicts the mechanical properties of the final product, such as tensile strength (TS) and yield 
strength (YS), based on a metallurgical model accounting for each individual strengthening contribution.  

 

Figure 1. Schematics of the MicroSim, PhasTranSim and MechPropSim modules and input/output information. 

MicroSim is designed to simulate the evolution of the austenite grain structure under industrial rolling conditions. Unlike 
conventional models that rely on mean grain size values, MicroSim computes the evolution of full grain size distributions by 
discretizing the microstructure into grain size bins. Each bin evolves independently according to local strain, temperature, and 
time histories, enabling the model to capture the heterogeneity typical of industrial rolling, especially in thick plates where 
through-thickness gradients are pronounced [1]. The model accounts for the main microstructural mechanisms that govern 
austenite evolution: dynamic recrystallization is modeled as a strain-dependent process, influenced by strain rate and 
temperature, while static and metadynamic recrystallization are treated as time-temperature transformations affected by solute 
drag and precipitation effects. In microalloyed steels, strain-induced precipitation plays a particularly relevant role by retarding 
recrystallization during finishing passes, which leads to a pancaked austenite structure and refined transformation products. 
The evolution of precipitates and their effect on recrystallization is therefore integrated into the model linked to composition 
and deformation parameters. 

The thermal model embedded within MicroSim enables the prediction of through-thickness temperature profiles, using rolling 
conditions to reconstruct internal gradients. This allows for the evaluation of local temperatures at different depths—surface, 
quarter-thickness, and centerline—and their influence on recrystallization, strain accumulation, and grain size evolution. When 
combined with the MicroSim calculations, this model offers a comprehensive view of through-thickness microstructural 
heterogeneity and its relationship to rolling and cooling strategies [2]. 

Following the austenite evolution, the transformation to ferrite, pearlite, bainite, or martensite during cooling is modeled using 
PhasTranSim. This model takes the output from MicroSim—specifically the final austenite grain size distribution, degree of 
pancaking, and chemical composition—as initial conditions to predict the kinetics of phase transformations. Ferrite formation 
is modeled based on nucleation at prior austenite grain boundaries, with transformation kinetics strongly influenced by grain 
refinement and prior strain history. The model uses time-temperature-transformation concepts adapted to continuous cooling 
paths, considering the effects of composition and grain size on transformation start times and phase fractions. In the case of 
martensitic transformation, the model uses established relationships to estimate the martensite start temperature (Ms) and 
resulting hardness, based on the alloying content and the austenite microstructure. 

The integration of MicroSim, PhasTranSim, and the thermal model enables end-to-end simulation of microstructure 
development from reheating to final cooling. This framework has been applied to a variety of industrial use cases involving 
Nb, Ti, and Mo microalloyed steels, demonstrating its capability to reproduce the influence of reheating temperature, strain 
path, interpass times, and cooling rate on both microstructural evolution and final mechanical response. The models have 
proven particularly useful in understanding through-thickness heterogeneity in thick plates, validating temperature models via 
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Mean Flow Stress analysis, and evaluating transformation behavior using predicted cooling curves and transformation start 
times. 

MechPropSim module, currently under development, predicts yield (YS) and tensile (TS) strengths based on a metallurgically 
based model. It is well reported that the yield strength of low carbon microalloyed steels can be described as a combination of 
different strengthening contributions. The initial approach in MechPropSim was set on a linear approach based on the sum of 
the contributions (solid solution [3], grain size [4], dislocations [5], and fine precipitation [6]) (Equation (1)). To estimate the 
individual contributions, equations previously reported in the literature were employed and a more detailed description of the 
expressions and symbols can be found in [7,8].  

𝜎௬ൌσ଴൅σss൅σgs൅σఘ൅σppt (1)

After an initial validation step, it was observed that individual strengthening contribution predictions were not very accurate 
when compared to measurement-based estimations resulting from the above references papers. Therefore, a more advanced 
prediction tool based on artificial intelligence was developed and this is the core development described in the following 
section.  

ADVANCED MATHEMATICAL TOOLS 

While physically-based microstructural models such as MicroSim and PhasTranSim provide a robust foundation for 
understanding the underlying mechanisms of hot deformation and phase transformations, their predictive capability can be 
further enhanced through the integration of data-driven approaches. In particular, the application of symbolic regression 
techniques introduces a complementary modeling strategy capable of capturing complex, non-linear relationships between 
process variables, microstructure, and mechanical properties. This hybrid approach leverages the explanatory power of physical 
metallurgy of AI-based methods to extract interpretable equations from experimental and industrial data. In this work, symbolic 
regression is employed to develop empirical models that enrich the existing microstructural modeling framework, focusing on 
critical aspects such as ferrite grain size, dislocation density, and yield strength. These models are trained using experimental 
datasets and process outputs from MicroSim and PhasTranSim, forming a bridge between simulation-driven insights and data-
derived correlations. The integration of symbolic regression thus represents a step forward in creating intelligent, self-adaptive 
models that enhance both accuracy and interpretability in rolling process predictions. The expansion of these advanced tools is 
ongoing for other modules such as Mean Flow Stress predictions and microalloying element solubility estimations. 

Symbolic Regression 
Symbolic regression (SR) is an Artificial Intelligence method that searches for a model in the form of a symbolic equation, 
combining mathematical functions to fit a set of data. SR can be a useful tool for discovering empirical equations and provides 
an output that is easily interpretable. Although there are many ways to perform the task of searching for equations, the most 
common approach is to represent equations as trees with operators, variables, or parameters as nodes and to use genetic 
algorithms for optimization [9]. The main objective is to find an equation that is as simple as possible while maintaining proper 
accuracy. 

One of the main challenges in the materials field is the limitation of data, especially when it needs to be obtained through 
experimental tests. The smaller the dataset, the higher the error, and the greater the degree of freedom required in the model to 
improve accuracy [10]. Symbolic regression can be used to develop models for small datasets and is effective at generalizing 
beyond the training set [11]. 

In this study, PySR software was selected for SR training due to its flexibility in creating custom problems and its superior 
performance compared to other software in many aspects [99]. The objective is to evaluate the viability of symbolic regression 
for hot rolling modeling. Consequently, all models were developed using PySR's default settings, utilizing the operators ["+", 
"*", "-", "/", "^"]. A constraint was applied to the "^" operator, limiting the exponent to a maximum complexity of one. 

SR Applied to Mechanical Properties Prediction 
For mechanical properties prediction, data-driven models are becoming increasingly popular [12]. Mechanical properties can 
be measured in plants, and these, along with other process parameters, can be used to train robust machine learning algorithms. 
However, these algorithms are often not transferable between plants or require retraining when a new product is manufactured. 
This study aims to develop a mechanical properties model that is applicable to different products and provides insights into the 
strengthening mechanisms involved. 

Previously, MechPropSim relied on empirical models from the literature to calculate mechanical properties, specifically yield 
strength. However, this approach did not yield the expected results, and the model was not sufficiently accurate. Therefore, this 
study focuses on improving the block’s accuracy by employing a hybrid method that combines well-known expressions from 
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the literature with a symbolic regression algorithm. This approach aims to produce a model that is both accurate and informative 
about the strengthening mechanisms in the alloy and process. 

To train the model, a dataset of 20 samples from multiple plate mill plants was used. This dataset includes industrial rolling 
data, composition, mechanical properties, and additional laboratory measurements of the microstructure. Contributions from 
the previous MechPropSim model were also incorporated, calculated using literature formulas with the precipitation 
contribution determined as the remainder of the total YS value. 

However, to enable MechPropSim use in an online process, certain variables that are not directly measurable must be calculated 
as part of PhasTranSim. Specifically, this includes the ferrite grain size and dislocation density. Consequently, three models 
were developed: one for predicting ferrite grain size, another for dislocation density prediction, and one for yield strength. 

Ferrite Grain Size 
Symbolic regression has been applied to derive empirical expressions for ferrite grain size. Low angle boundary unit size values 
were selected in this case, as this magnitude is affecting the yield strength properties. Both process parameters and results from 
MicroSim are utilized in this model. In line with the understanding of ferrite grain size, symbolic regression searches for an 
equation in the form of f(CR, Dγ, C, Mn, Mo, V, Nbsol). Figure 2 shows the Mean Absolute Error (MAE) of the training and 
test samples as a function of equation complexity, compared with the previous model used in the software.  

Expressions with low complexity, such as a constant or a binary operation between two variables, are not complex enough to 
accurately represent the mechanisms. Conversely, when the complexity is too high, the algorithm's performance also deteriorates. 
Thus, an equation with a complexity around 9 appears to be the best option. When compared to the previous predictions, it is evident 
that although the error remains high in some cases, the improvement over the previous model is significant. 

 

Figure 2. MAE values for ferrite grain size prediction as a function of equation complexity. 

Figure 3 presents the predicted values compared with the actual measurements for the selected best model. In this case, the 
model with complexity 9 was selected as the best due to its low MAE value. Increasing the complexity would result in reduced 
interpretability without significantly improving the error. It is evident that, for both the training and test sets, the symbolic 
regression models with relatively high complexities closely match the measurements. 

 

Figure 3. Comparison between ferrite grain size measurements with predictions from previous model and the selected SR 
model. (a) Training set; (b) Test set. 
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Dislocation Density 
To model the dislocation density, estimated using the Kernel Average Misorientation (KAM) values measured by EBSD [5], 
symbolic regression is used to search for a function in the form of f(CR, C, Mo, Nbsol). Figure 4 presents the MAE versus 
complexity. No previous model is available for comparison, as predicted dislocation density was not included in earlier versions 
of the model. It is observed that low-complexity models exhibit high errors, while complexities between 5 and 9 yield good 
results. For equations with higher complexities, the errors begin to stabilize, making further increases in complexity 
unnecessary. 

 

Figure 4. MAE values for dislocation density prediction as a function of equation complexity. 

Figure 5 displays the real measurements alongside the predicted values from the complexity 9 model. This model was selected 
because it offers a good trade-off between error and complexity based on the training set. In most cases, the predictions closely 
match the measurements. Although there are some exceptions where neither model performs well, the errors remain close to 
the measurement error. 

 

Figure 5. Comparison between dislocation density predictions from previous model and the selected SR model. (a) Training 
set; (b) Test set. 

Yield Strength Predictions 
As previously mentioned, the modeling of yield strength has been extensively studied. The aim here is to develop a hybrid 
model using symbolic regression to derive an equation that integrates existing knowledge. The expression in Equation (1) 
outlines the yield strength contributions considered in this study. As mentioned before, several of these contributions are well-
documented in the literature. For instance, the yield strength of iron is typically around 53.9 MPa, and the influence of ferrite 
grain size follows a relationship proportional to 𝑑ఈି଴.ହ. In the case of solid solution strengthening, various formulas exist; here, 
this contribution is treated as a function 𝑓൫𝑀𝑛,  𝑆𝑖,  𝑀𝑜,  𝑁௙௥௘௘൯, which will be determined using symbolic regression. The 
contribution from dislocation density generally exhibits a direct proportionality to 𝜌଴.ହ. Similarly, for precipitation 
strengthening, and due to the lack of accurate volume fraction measurement, there was no individual contribution validation. 
So, this contribution will also be derived through SR as a function 𝑓ሺ𝐶 ∙ V, N୤୰ୣୣ ∙ V,  C ∙ Nbୱ୭୪, C ∙ Tiୣ୤୤,  CRሻ. 
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Also, it is worth mentioning that the loss function is constructed to minimize the error between the predicted total yield strength 
and the measured values. Additionally, the loss function includes terms to minimize the deviation of each contribution from 
the corresponding values in the dataset from the previous study. 

Figure 6 shows the MAE versus the complexity of the 𝜎௦௦ and 𝜎௣௣௧ terms, where symbolic regression is used to discover 
equations. The MAE of the training and test sets from the previous model is used for comparison. It is evident that the equations 
obtained require very low complexity for these two terms, with a complexity of 4 being sufficient. This is reasonable because 
this level of complexity accounts for only two terms, whereas the complexity of the full yield strength expression is much 
higher. Additionally, having a high complexity would not be practical, given that only 16 samples are used for training. 

 

Figure 6 MAE values for yield strength prediction as a function of equation complexity. 

Figure 7 displays the measured and predicted values for complexity 4 model, which has been found to be sufficient for modeling 
the yield strength. It is evident that the model obtained through symbolic regression is in good agreement with the 
measurements. While the previous model performs well and even better in some samples, it exhibited unacceptable errors in 
others. In contrast, the symbolic regression approach accurately predicts all samples. 

 

Figure 7 Comparison between yield strength measurements with predictions from previous model and the selected SR model. 
(a) Training set; (b) Test set. 

From the results presented in this section, SR can be an interesting approach for improving individual strengthening 
contributions as well as predicting YS values within a reliable range. As this work progresses, and additional data sets are 
included into the training set, new expressions with a higher validity for a wider interval of chemical compositions and 
processing conditions will be recalculated. The same approach is also ongoing for coiled strip products where, in addition to 
rolling and runout table cooling conditions, the effect of coiling must be considered in the prediction of mechanical properties.  

MODEL APPLICATION FOR THE PRODUCTION OF A NB-TI 50 MM THICK PLATE 

The above describe model was applied to the hot rolling of an air-cooled 50 mm thick plate. The chemistry was defined as a 
S355 grade 0.16%C, 1.5%Mn steel microalloyed with 0.04%Nb and 0.02%Ti. The rolling schedule was defined as a 
combination of 11 roughing passes and 6 finishing passes, after a reheating at 1250ºC and a finish rolling temperature of 925ºC. 
Figure 8 shows the results from MicroSim Plate Mill model. Using the Temperature Model, the cooling path after the last 
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finishing pass was calculated using air cooling conditions without any accelerate cooling step. The equivalent cooling rate 
calculated in the 800-500ºC range is of 0.3ºC/s in the quarter position of the plate. PhasTranSim model results (see Figure 9) 
show a phase balance of about 80% ferrite, 20% pearlite combination in the final microstructure. The measurements in the 
industrially processed plate resulted in a fraction of 75% ferrite and 25% pearlite and a Vickers Hardness of 172.2 HV, very 
close to the values predicted by PhasTranSim. The ferrite grain size measured in the optical microscope results in an average 
grain size of 10 µm, lower than the one predicted by PhasTranSim. In the current PhasTranSim version, the prediction for grain 
size is limited to polygonal ferrite structures and provides values of high angle boundary unit sizes. This value will be different 
for the mechanical property model where a low angle boundary unit size is predicted and considered for the strengthening 
contribution. This change will help to better predict non-polygonal or acicular type of microstructures. 

 

Figure 8. MicroSim results for the 50 mm hot rolled plate. 

 

Figure 9. PhasTranSim results for the 50 mm air-cooled plate. 

Using these new submodels as the prediction engine for the MechPropSim model, an YS of 438 MPa is predicted, while the 
measured YS is of 428MPa. Figure 10 shows the different strengthening contributions to reach these properties.  It is important 
to note that, while the total yield strength value in the expert estimation is a real measurement, the individual mechanism 
contributions are not directly measured. The contributions are estimated based on EBSD measurements such as low angle 
boundary unit sizes for grain size and Kernel Average Misorientation for dislocation density. Due to the lack of accurate 
measurements of precipitate volume fractions, the contribution of fine precipitation (σppt) was estimated by subtracting the 
strengthening associated with all the other contributions from the experimental yield strength. Therefore, the symbolic 
regression models aim to approximate the total YS value and produce contributions that are consistent with expert assessments, 
rather than to replicate them exactly. In any case, the results across all complexity levels show good agreement with 
expectations. 
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Figure 10. MechPropSim results for the 50 mm hot rolled and air-cooled plate. Comparison between prediction model and 
experimental expert measurement/estimation. 

CONCLUSIONS 

This study presents the development and integration of a hybrid modeling framework for predicting microstructural evolution 
and final mechanical properties in hot rolled steels, combining physically-based metallurgical models with advanced AI-driven 
tools. The MicroSim and PhasTranSim modules have demonstrated their capability to simulate the evolution of austenite and 
subsequent phase transformations with high resolution, capturing the influence of composition, strain path, temperature 
gradients, and microalloying additions on grain refinement and transformation kinetics. By incorporating grain size 
distributions and through-thickness thermal profiles, the models provide a comprehensive view of the complex interactions 
occurring during plate rolling. 

To complement and extend the predictive power of these models, symbolic regression techniques have been introduced as a 
data-driven layer capable of extracting interpretable relationships from industrial datasets. The resulting empirical models, 
applied to ferrite grain size, dislocation density, and yield strength, have shown improved accuracy over traditional formulations 
while maintaining a physical basis aligned with metallurgical principles. As the training database expands to new plates with 
broader chemical compositions and processing the conditions, the submodels will evolve to higher accuracy in their predictions. 
This development is ongoing. 

The integration of mechanistic and AI-based approaches within a single modeling platform offers a powerful tool for intelligent 
process design, virtual alloy development, and adaptive process control in rolling mills. This methodology not only enhances 
predictive reliability across a broad range of steel grades and processing conditions, but also supports digitalization and sustainability 
objectives by reducing reliance on plant trials and enabling more efficient, knowledge-based manufacturing strategies. 
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