Metallurgy – Processing, Products & Applications Webinar

Tuesday, 24 November 2020 • 1:30 p.m. – 3 p.m. EST

►Register Now  | ►Sponsor this Webinar

Attendees will learn about a variety of metallurgy, processing, products and applications-related topics that were originally scheduled for presentation at AISTech 2020. This webinar will present three papers including “Generation of High-Corrosion-Resistance Surface-Optimized Diffusion Alloy (SODA) Steel Sheet for Forming Operations,” “Development of Nanobainitic Steels With Accelerated Kinetics and Tensile Strength of 1.7–2.0 GPa” and “A Modified Johnson-Cook Model Incorporating the Effect of Grain Size on Flow Stress.” 

PRESENTATIONS

Generation of High-Corrosion-Resistance Surface-Optimized Diffusion Alloy (SODA) Steel Sheet for Forming Operations

Zach Detweiler, Arcanum Alloys 
Zach Detweiler is the director of research at Arcanum. The research team is responsible for developing new methods and adapting them to existing manufacturing techniques to allow production of alloys at the massive scale expected from the steel industry. He holds a Ph.D. in the chemistry of materials from Princeton University.

Arcanum Alloys has developed a method to generate variable chromium concentrations at the surface of a steel substrate at the sheet coil scale. This presentation will cover the development of a steel substrate that is compatible with high-temperature annealing and diffusion alloying. The corrosion performance of the resulting alloy will also be discussed in terms of surface chromium concentration and steel substrate chemistry. Lastly, the mechanical properties will be presented to highlight the potential of spatially segregating alloys with this platform technology.

Development of Nanobainitic Steels With Accelerated Kinetics and Tensile Strength of 1.7–2.0 GPa

Minal Shah, CSIR-National Metallurgical Lab
Nanobainite steels with medium carbon ~0.5 wt.% are produced in the present work with faster kinetics and without the addition of cobalt and aluminum. Nanobainitic steel of 1.7–2.0 GPa ultimate tensile strength is used in application of wear resistance, ball bearing and gears. Kinetics of bainitic transformation was investigated by emphasizing on influence of alloying elements to produce nanobainitic steel. Reduction of carbon in the alloy accelerates the kinetics of transformation as it increases the driving force for bainitic transformation and it reduces activation energy of the dislocation barrier determined using a kinetic model. The activation energy of the dislocation barrier has a direct relation on austenite strength at the transformation temperature.

A Modified Johnson-Cook Model Incorporating the Effect of Grain Size on Flow Stress

Shouvik Ganguly, Missouri University of Science and Technology
The mechanical properties of steel are influenced by grain size, which can change through nucleation and growth at elevated temperatures. However, the classic Johnson-Cook model that is widely used in hot deformation simulations does not consider the effect of grain size. In this study, the Johnson-Cook model was modified to incorporate the effects of austenite grain size on flow stress. A finite element model was employed to characterize the effects of grain size on the flow stress for different steel grades over a range of temperatures (900°C to 1,200°C). Simulation results show good agreement with experimental observations.

MODERATOR

TBD

ORGANIZED BY

AIST’s Metallurgy – Processing, Products & Applications Technology Committee