Hearth Temperature Control at USS Blast Furnace No. 14

In 2016, 10 years after the hearth was installed, Blast Furnace No. 14 experienced rapid hearth wall temperature increases under the three tapholes. U. S. Steel and Hatch embarked on an exhaustive root-cause analysis of the hearth cooling system, force balance assessment and a process parameters review using big data advanced analytics. Various countermeasures were developed and implemented, including actions to promote floating of the deadman, improved leak detection methods, innovative temperature visualization techniques and ilmenite point charging. Hearth temperature control improved, temperatures moderated and production was increased. Details of the approaches used and results are presented below.

Blast Furnace No. 14 (BF14) is the largest blast furnace at United States Steel Corporation. The current hearth design was implemented in 2010 and features a micropore carbon block construction with graphite installed in the taphole area between the cold face of the micropore carbon and the steel shell. The hearth is well instrumented, with more than 500 thermocouples installed. Hearth wall thermocouples are positioned at 4, 12 and 20 inches from the carbon block cold face. The BF14 hearth construction and hearth thermocouple placement can be seen in Figs. 1 and 2. Further details on the BF14 design and operation are available from the AIST North American Blast Furnace Roundup.1

In 2016, six years after the hearth was installed, BF14 experienced rapid hearth wall temperature increases under all three tapholes. The HW3 20-inch thermocouples immediately below the graphite layer at each taphole began to exhibit temperatures >1,425°F. At this alarm temperature, immediate planned stops are required to protect the BF14 hearth wall per U. S. Steel’s hearth protection procedures.

In February 2017, U. S. Steel and Hatch embarked on an exhaustive root-cause analysis of the hearth cooling system, force balance assessment and a process parameters review using big data advanced analytics. Various countermeasures were developed and implemented, including actions to promote floating of the deadman, improved leak detection

The article is available online at AIST.org for 30 days following publication.
methods, innovative temperature visualization techniques and ilmenite point charging. Hearth temperature control improved, refractory temperatures moderated and production was increased as the countermeasures were deployed and refined. Details of the approaches used and results achieved are described.

Hearth Temperature Management Strategies

As documented by S. Street et al., blast furnace operators will adopt concurrent strategies to lower hearth refractory temperatures and protect the hearth. Street named this “polytherapy.” At BF14, several initiatives were started in 2017, including:

- Hearth wear and heat transfer analysis.
- Refractory temperature visualization.
- Casting practice improvements.
- Deadman positioning and fuel strategies.
- Increased tuyere velocity.
- Rapid water leak detection.
- Improved hot metal temperature control.
- Coke quality review.
- Ilmenite point charging.

As these practices were applied, refractory temperatures moderated and by early 2018, hearth temperature–related stops and production cutbacks were virtually eliminated. Details are provided in the subsequent sections.

Hearth Design, Wear and Heat Transfer Analysis — The BF14 hearth diameter/sump depth is on a critical line identified by Voegelpoth, Still and Peters where the deadman is floating or resting (Fig. 5).^3^ Wear of the BF14 hearth bottom increases the opportunity for the deadman to partially or completely float if other conditions warrant. Skull buildup on the refractory walls can decrease the effective hearth diameter, which will also promote the deadman to float. In early 2017, detailed heat transfer analysis characterized the BF14 refractory wear and skull topography. Most, but not all, of the ceramic pad was worn away. Bottom wear was estimated at each taphole, and local sumps were identified where the ceramic pad was lost. A large skull was estimated on the hearth wall opposite the tapholes as well as less bottom wear (Fig. 4).

With the BF14 hearth dimensions being on or near the critical transition between the resting and floating deadman, floating of the deadman was challenging. Bottom temperature spikes indicated deadman floating events, but these events were not sustainable (Fig. 5). The progressively higher peaks in bottom temperature spikes shown in Fig. 5 were considered a sign that the hearth ceramic pad was wearing. The distance from the flowing hot metal to the hearth bottom thermocouples located under the ceramic pad was decreasing, hence greater temperature spiking was observed. The deadman position was unpredictable and challenging to control. Actions
were taken to analyze these trends and ultimately manage the deadman position.

Temperature Visualization — To better understand the interrelationship between hearth wall and bottom temperatures, detailed temperature maps and “hearth temperature movies” were created by interpolating between measuring points. This allowed long-term temperature trends to be reviewed in a few minutes. Casting events and plugged tuyeres were added to the movies to allow observation of temperature changes in the casting and tuyere practice. Frames from selected movies may be seen in Fig. 6 during a period in August 2017 when local elevated temperatures were evident at taphole 3 (TH3).

The hearth movies helped the team recognize and understand a range of refractory temperature conditions and identify parameters that maintained lower refractory temperatures under the tapholes. Later, an Excel-based program was implemented to generate the daily temperature profiles. The Excel program can take a snapshot at a point in time or compare temperature changes between two periods. This was useful in assessing the merits of ilmenite charging, as will be shown later in the paper.

Casting Practice Improvements — In early 2017, the casting practice was a two-taphole operation with a short gap between casts. In mid-2017, a focused effort was made to implement a fully dry hearth practice with a short casting overlap to reduce the velocity of liquids flowing into the hearth.
Hearth refractory temperatures on 1 August 2017 during a period with elevated temperature by TH3 (a) and hearth refractory temperatures on 14 August 2017 showing higher bottom temperatures away from the tapholes (b).
flowing in the hearth. Due to concerns over the BF14 force balance and general deadman cleanliness, pulverized coal injection (PCI) was halted in December 2017 in favor of higher rates of natural gas injection. Slag drainage improved significantly in 2018, as illustrated by a more consistent slag granulating rate (Fig. 7).

Casthouse improvement efforts led to a significant improvement in the slag casting time, expressed as the percentage of the cast where slag was flowing. Slag came much earlier, and slag surges were significantly reduced — a further indicator of improved hearth permeability (Fig. 8).

Deadman Positioning and Hearth Permeability — The deadman position can greatly influence hearth drainage and refractory temperatures. To better understand the loads imposed on the deadman, a force balance model was developed (Fig. 9).

Using the force balance model, various scenarios were studied comparing past operating conditions and to assess countermeasures that could lessen the downward forces on the deadman.

Calculations were completed for the following scenarios:

- All-coke operation.
- Natural gas at 160 lbs./nthm.

- PCI at 180 lbs./nthm and NG at 40 lbs./nthm.
- Lowering the stockline by 2 feet.
- Lowering the top pressure by 1 psi.

Changing the fuel injection practice to natural gas or an all-coke operation reduced the downward force on the deadman to the greatest extent. Reducing stockline and top pressure were considered to facilitate PCI injection and a low coke rate. The analysis confirmed that even with these changes, the
downward forces on the deadman were greater than a natural gas injection practice offered.

In December 2017, BF14 switched to natural gas injection as a countermeasure to lift the deadman and increase the amount of transverse versus peripheral flow of hot metal in the hearth. The objective of this change was to increase hearth bottom temperatures and reduce hearth wall temperatures. Hearth bottom temperatures increased moderately but hearth wall temperatures remained high. While these efforts to lift the deadman were helpful, they did not immediately eliminate the high hearth wall temperature events. Production stops were still needed to build a sustainable hearth skull under the three tapholes.

Rapid Water Leak Detection — Water leakage can compromise the protective skull on the hearth wall, and in extreme cases oxidize the carbon refractory. Using a focused data mining exercise, Hatch and U. S. Steel developed a soft sensor to rapidly identify water leakage from the tuyere nose cooling circuits. The soft sensor was extremely reliable and improved the response time to tuyere leaks. Details are provided in a separate paper.4

Tuyere Velocity — Increased tuyere velocity was implemented to improve deadman permeability. Baoshan had reported that greater blast energy produced a higher hearth bottom temperature, a sign of improved hearth permeability.5 In 2018, the BF14 tuyere velocity was increased from about 690 to 740 feet per second (fps) on two occasions (Fig. 10).

Baoshan reported a time lag of 17 days when comparing the change in blast energy to hearth bottom temperatures. For BF14, a longer lag of 90 days was needed to align tuyere velocity with increases in bottom temperature. Increased tuyere velocity appeared to help increase bottom refractory temperatures, but...
the response time was slow. A higher tuyere velocity, >720 fps, may be part of a future operating strategy to maintain elevated hearth bottom temperatures.

From September to October 2018, tuyere velocity was reduced to 700–720 feet per second as a countermeasure to worn/leaking copper staves in the lower stack.

Coke Quality — While a variety of factors can impact the deadman, coke quality is a leading factor associated with deadman fouling. Defining the appropriate coke quality for a specific blast furnace and related operating practice can be challenging, especially related to hearth wall and bottom temperature impacts. Coke quality charged to BF14 on a railcar-by-railcar basis was collected for an extended period and compared to the observed hearth bottom temperatures. Using principle component analysis, the coke strength after reaction (CSR) best correlated to the hearth bottom temperatures using a 17-day lag. During the nine-month review period in 2018, CSR varied from 60.5 to 69.2. Hearth bottom temperatures appeared to decrease when the CSR was <64 for a sustained period and increase when CSR >64, also for a sustained period (Fig. 11).

The trends in the hearth bottom temperatures also coincided with the tuyere velocity changes cited in Fig. 10. Additional analysis is planned to better understand the impact of coke quality and specifically CSR on the BF14 hearth refractory temperatures. The response of the hearth bottom temperatures to changes in coke CSR and tuyere velocity is slow, making it challenging to impact hearth temperatures over a brief period.

Improved Hot Metal Temperature Control — A modified thermal control model was implemented to reduce hot metal temperature variations. Control of hot metal temperature was selected over hot metal silicon content as hot metal temperature data was more readily available. The aim was to reduce the contribution of elevated hot metal temperature to hearth wall refractory heating. The natural gas injection rate was adjusted based on the instantaneous production

FIGURE 11

Comparison of the coke strength after reaction (CSR) with a 17-day lag to the BF14 hearth bottom refractory temperature. Daily data from April to October 2018.

FIGURE 12

Improved hot metal temperature control during October 2018, the first full month using the modified thermal control model.
rate calculated from the top gas analysis and hot metal chemistry rather than charged production rate. Statistical process control methods were used to better assess the hot metal temperature trends and subsequent natural gas injection rate changes needed to meet the target temperature. During October 2018, the first full month using the modified model, hot metal temperature range and aim decreased as the model tightened the control based on a moving control target (Fig. 12).

The modified thermal control model showed promise to reduce hot metal temperature variations. Additional development work had been planned for 2019 to build on the early successes using the instantaneous production rate and further refine the natural gas fueling practice.

Ilmenite Point Charging — The use of titanium-bearing minerals is a well-known strategy to reduce hearth refractory temperatures. Bulk additions and individual tuyere injection are used by many blast furnace ironmakers when faced with high hearth wall refractory temperatures. Conceptually, the titanium in the hot metal forms Ti (C, N) particles that precipitate and then deposit onto the refractory wall. The success of employing ilmenite is tied closely with the concentration of Ti in the hot metal. A concentration of >0.07% Ti in hot metal is necessary to achieve sufficient precipitation of Ti (C, N) particles. This criterion makes using ilmenite as a standard burden material challenging. A high dosage rate would be required to ensure that a sufficiently high Ti concentration is achieved throughout the entire area of the hearth. The granulated slag TiO₂ concentration would exceed the 0.75–1.00% TiO₂ limit set by cement industry clients.

AK Steel – Dearborn Works developed a point charging practice where the bell-less top is used to charge ilmenite above specific locations where high hearth wall temperatures are evident. In principle, point charging provides a concentrated ilmenite dose over a small area that is experiencing elevated temperatures. In late 2017, the BF14 bell-less top was programmed to point charge ilmenite. Point charging trials started on 1 January 2018 to alleviate the high hearth temperatures experienced below the tapholes. Three ilmenite point charges per day were implemented, with each charge being 10,000–15,000 lbs., depending on the hot metal production target. The point charging rate considered the slag TiO₂ limit of 0.75% daily. The location of the ilmenite point charging was adjusted to target the hearth thermocouples that were experiencing elevated refractory temperature readings.

In Fig. 13, the accuracy of the ilmenite point charging practice is illustrated. Point charges were within ±10° of target angle, an excellent result. For reference, the intertuyere spacing is 10.5°. Point charges could be reliably achieved between tuyeres to avoid depositing the ilmenite directly over a tuyere where the material could interact with the blast air and be pushed away from the wall. Early experience showed that point charging reduced high hearth wall temperatures. Additions made over taphole 3 for a 4-week period provided immediate relief and sustained lower refractory temperatures as production increased (Fig. 14).

Plots comparing the hearth wall temperatures between periods were developed to assess the
effectiveness of the point charging practice. In Fig. 15, the differential refractory temperature between two periods is compared before and after point charging was implemented over TH1. This provided more evidence that the point charging had a desirable local effect. A similar change was observed at the other tapholes.

The point charging practice resulted in spikes in the hot metal titanium concentration. Individual torpedo car analysis had titanium concentration >0.07% Ti needed for Ti (C, N) precipitation. Due to the nature of point charging, the local concentration of Ti may have been greater than that measured in individual torpedo cars. The individual torpedo car assays and the %Ti in hot metal needed for precipitation and skull formation may be compared in Fig. 16. The skull ratio definition is described in Reference 6.

Improved Refractory Temperature Control

In 2018, the hearth wall 3 (HW3) temperatures were all maintained below 1,400°F. The HW3 temperatures were maintained between 600 and 1,000°F for sustained periods (Fig. 17).

The rate that hearth wall temperatures increased for HW3 and HW2 thermocouples located below the tapholes greatly reduced comparing 2018 to 2017. Active refractory thermocouples, >800°F, would climb at about 1–2°F per hour in 2018 compared to 2–8°F per hour in 2017 (Fig. 18).

Hearth wall refractory temperatures were reduced and rapid temperature increases/spikes dampened due to:

Figure 15

Change in hearth wall refractory temperature comparing 18–20 January 2018 to 26–28 February 2018 with point charging over taphole 1 (TH1) at angles 44°, 72° and 74°.

Figure 16

Comparison of BF14 hot metal titanium content when ilmenite was point charged to concentrations needed to precipitate Ti (C, N) particles.6
Reduced local hot metal velocity and heat load under the tapholes because of (i) casting improvements that minimize liquid accumulation and high slag tapping rates, and (ii) less downward force on the deadman by using natural gas injection and a higher coke rate.

Deposition of a Ti (C, N)-bearing skull with lower thermal conductivity than a hot metal skull over the vulnerable thermocouple positions under each taphole. This Ti-rich process skull appeared to be more insulating than a simple hot metal skull.

Summary

Using a focused and systematic approach, improved control of the Blast Furnace 14 hearth wall temperatures was accomplished. Production stops in response to high hearth wall temperature alarms were virtually eliminated in 2018. Close control of the deadman position, improved hearth drainage and reduced local heat load in the critical taphole zones contributed to the lower hearth wall temperatures. Ilmenite point charging reduced peak refractory temperatures under the tapholes without compromising hot metal and granulated slag qualities. Detailed process data and heat transfer analysis, coupled with advanced visualization and data interpretation, were key to understanding trends and the impact of the countermeasures employed. Teamwork under challenging conditions was paramount to managing the hearth temperatures while meeting the Blast Furnace No. 14 production requirements.
Acknowledgments

The authors acknowledge and thank U. S. Steel for permission to publish this paper. The authors thank U. S. Steel’s Lou Lherbier and Greg Yanief for their input on many technical discussions and Hatch’s Max Shen for his creativity in developing the hearth movies. Many other stakeholders contributed to the discussions and implementation from both U. S. Steel and Hatch that are too numerous to mention. The authors thank them for their input and commitment to implementing changes to reduce the Blast Furnace No. 14 hearth wall temperatures.

Disclaimer

The material in this paper is intended for general information only. Any use of this material in relation to any specific application should be based on independent examination and verification of its unrestricted availability for such use and a determination of suitability for the application by professionally qualified personnel. No license under any patents or other proprietary interests is implied by the publication of this paper. Those making use of or relying upon the material assume all risks and liability arising from such use or reliance.

References

This paper was presented at AISTech 2019 — The Iron & Steel Technology Conference and Exposition, Pittsburgh, Pa., USA, and published in the Conference Proceedings.

We’re on multiple channels.

Tune in to the steel conversation!