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Machine Learning for Vibration Monitoring and Analysis
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Predictive maintenance, and specifically asset condition monitoring and analysis in metal 
production plants, continues to see significant advances in cloud computing, sensors, and 
machine learning technologies. Primetals Technologies and ITR have partnered to provide the 
latest predictive maintenance services and solutions and ongoing research and development in 
waveform analytics. After decades of using human and statistical techniques, machine learning 
methods are now being applied to further improve efficiency and accuracy in the diagnosis and 
prognosis of potential failure modes of rotating machinery. Machine learning methods allow 
monitoring systems to react even faster and more precisely than traditional tools and methods. 
This paper discusses how machine learning was successfully applied to route-based data 
collection and analysis and condition monitoring and analysis systems for machine vibration data 
to improve process efficiencies and system response times. Additionally, it demonstrates how 
machine learning further augments even the most experienced professional analysts to ensure 
no missed problems and false alarms.

In the 1970s, predictive mainte-
nance (PdM) played a very small 

role in maintenance practices for 
most industries with exception, per-
haps, to the petrochemical indus-
try. While the technology existed to 
collect, store and trend important 
machine criteria such as tempera-
ture, pressure, vibration, oil con-
tent, etc., it was more commonplace 
to “run to breakdown” or perform 
time-based maintenance during 
extended shutdowns. The 1980s saw 
the wide acceptance and implemen-
tation of predictive maintenance 
programs, due in large part to 
advancements in sensors, personal 
computing and portable monitor-
ing technologies. During the 1990s, 
sensor technology improved further 
and the size and cost of sensors 
decreased. With improved technol-
ogy and lower costs, dedicated mon-
itoring systems have become cost-
effective alternatives to portable 
monitoring for select applications.

By definition, predictive mainte-
nance is a maintenance practice that 
involves monitoring one or more 
machine criteria to assess the con-
dition of that machine. The most 

commonly used predictive technolo-
gies include oil analysis, infrared 
thermography, airborne ultrasonic 
detection and vibration analysis. 
This paper discusses advancements 
in vibration analysis technology with 
specific emphasis on how condition 
monitoring and analysis systems 
(CMAS) use digitized knowledge 
to develop effective machine learn-
ing algorithms, and by extension, 
how these systems function as smart 
monitoring and analysis systems in 
the steel industry.

Traditional vibration monitoring 
and analysis has used one or both of 
the following methods: (a) establish-
ing and monitoring against thresh-
olds related to individual vibration 
characteristics, such as overall root 
mean square (RMS), banded RMS, 
or peak vibration, and (b) full- 
signature analysis whereby an 
expert reviews each frequency spec-
trum, time waveform and key fea-
ture, and relates it to a potential 
failure mode. The former approach 
is efficient and can direct analysts 
to potential problems requiring fur-
ther analysis. However, when the 
analysis involves complex assets that 
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experience varying conditions, such as changes in 
load, speed and product, resulting in inconsistent 
vibration, this approach quickly fails. This is particu-
larly true for machine faults that exhibit through low 
amplitude and high-frequency vibration. The later 
approach, full-signature analysis inclusive of analysis 
of all feature data, is far more thorough and returns 
more precise and timely results, but it also consumes 
more resources.

Advances in cloud computing, precision sensors 
and machine learning now make it possible to apply 
both vibration monitoring and analysis approaches 
on complex steel assets while consuming considerably 
fewer resources. By digitizing the knowledge of the 
experienced analyst over a broad set of asset operat-
ing conditions and using this knowledge base as the 
machine learning training sets, new algorithms can 
provide early detection of developing problems that 
were only previously possible with full analysis.

The general approach is to use analysis by experts 
to categorize machine conditions as either healthy or 
unhealthy based on a broad set of vibration signals, 
inclusive of feature data, time domains and frequency 
spectra. Further, if a machine is unhealthy, categorize 
the potential fault condition by severity and type(s) 
(e.g., misalignment, imbalance, bearing issue, gear 
issues). Machines categorized as healthy are given 
positive labels and machines categorized as having 
potential faults are given negative labels. The data 
related to machines with negative labels are added to 
the training set.

While the general approach is simple in concept, 
developing sufficient training sets is not easy because 
the traditional analysis methods taught and prac-
ticed in the vibration analysis industry often result 
in incomplete data sets insufficient for full analysis. 
Any alarm-based screening methods, as are common 
and generally accepted as good practice, ultimately 
result in incomplete or non-analysis and gaps in fea-
ture data. Fortunately, ITR developed processes in 
the 1980s specifically designed for analyzing variable 
load and speed equipment in the metals processing 
industry, and this process deviates significantly from 
normal industry practice. The result is comprehensive 
feature data and information (results of analysis) sets 
without gaps.

Even with complete and comprehensive data sets, 
another obstacle is unbalanced data. As expected, 
there are always far more healthy machines with 
positive labels than machines with negative labels 
and potential failure modes. Moreover, different ma- 
chines, and even individual measurement locations 
on the same machine, have their own signatures and 
signature characteristics. For example, a spectrum 
on machine A can indicate a healthy condition, 
but a similar spectrum on machine B would indi-
cate a potential issue. Process and asset parameters 

have significant impact on the classification of data. 
Consequently, machine learning models were fit to 
individual measurement locations on every machine. 
Sometimes, comprehensive “negative” label data sets 
did not exist because not all faults had occurred on 
all machines.

To solve these problems, ITR developed a machine 
learning exception system based on route-based data 
collection and analysis (RDCA) (RDCA processes 
collect data manually at intervals more frequent 
than typical failure modes and experts analyze the 
data and report findings). The expert findings were 
digitized, verified and then labeled accordingly as 
positive or negative using proprietary ITR software. 
Using this training method, the machine learning 
model was able to overcome the problem of unbal-
anced data sets to develop a universal scheme which 
was then implemented across most machine types, by 
each type of measurement location (e.g., drive-end 
bearing). Using the historical feature data stored in 
the ITR PdM database on the ITR cloud and inspired 
by Reference 7, a data set of 57,996 vibration signals 
was built. Using the signals related to the “positive” 
labeled data on each measurement location, the data 
set was searched to find the signals with high cor-
relation to form a qualified training data set for a 
one-class support vector machine (OSVM) model.17,18 

The training for OSVM only needs positive signals 
as input. Utilizing median absolute deviation (MAD) 
and OSVM training method with the data set, a tight 
decision boundary was formed which led to a very sen-
sitive model. But considering the goal of accurately 
discerning the large number of good machines from 
the much smaller set of machines with potential issues, 
an oversensitive model was acceptable and suitable.

For the negative signals identified by OSVM, a con-
volutional neural network (CNN) was designed and 
implemented to analyze the signatures. This included 
applying an aggregating logic to integrate each mea-
surement location’s signatures and then output a 
diagnosis for the machine as one of the following fault 
conditions: “Bearing Vibration,” “Coupling,” “Load or 
Process,” “Looseness” or “Signal Abnormal.” With the 
statistics extracted from many years of historical data, 
a severity from 1-star (minor), 2-star (moderate) and 
3-star (severe) was assigned. Furthermore, a seman-
tics analysis technology was designed and imple-
mented, enabling the models to output the results as 
a simple report. The testing results in the period from 
December 2020 to February 2021 for 956 machines 
showed the target system automatically labeled 728 
machines (76.15%) as “OK” with a 99.9% accuracy. Of 
the machines identified and verified as having issues, 
the specific diagnosis correctly classified the fault 
condition with an accuracy of 89.4%.

Additionally, ITR also developed another machine 
learning algorithm and model for a CMAS. With 
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some CMASs, expert analysis and reporting may 
not be routine and periodic, as was the case with 
the installed ITR system used in the study. Instead, 
experts respond to alarms (exception notifications) 
and analyze alarm/exception data. The CMAS will 
raise an alarm if any feature values exceed pre-set 
thresholds. Feature values can be discrete, calcu-
lated, or derived statistically, logically or historically. 
Common feature values include overall RMS, banded 
RMS, peak, crest factor, intensity factor, etc. While 
systems that include routine and emergency analysis 
provide larger data sets of verified results, CMASs 
provide much larger vibration data sets. With a CMAS, 
data is collected and processed every few minutes 
under normal operating conditions to assess machine 
condition. Due to the abundance of vibration data, no 
separate data set was needed in this case.

Just as with the RDCA system, ITR used the machine 
learning method OSVM and the dynamic trust model 
(DTM)2,9,10,13 and used data for the training set from 
a CMAS deployed in a pickle line tandem cold mill 
(PLTCM) for the purpose of identifying traditional 
drivetrain issues as well as fifth-octave chatter issues. 
This particular study focused on the latter issue. In 
this case and through expert analysis, specific char-
acteristics of the impulse peaks at known calculated 
frequencies and amplitudes were related to a specific 
known potential chatter issue. More specifically, these 
issues were directly related to early bearing faults and 
spalls in the rolls of the mill system. The OSVM on 
the CMAS data sets was able to identify the specific 
impulse peaks that the traditional signature thresh-
old method could not. During the three months after 
the machine learning algorithm was deployed on the 
PLTCM CMAS, one bearing issue was diagnosed from 
harmonics and four spall issues were diagnosed from 
impacting. Additionally, there were no false alarms.

Related Work 

There are some but not many published research 
efforts related to using machine learning for vibration 
analysis; e.g., Gan et al. in Reference 6 are using deep 
learning methods to recognize bearing faults on a 
machine which includes a 2-hp motor, a torque trans-
ducer, a dynamo-meter and a loaded motor. Same as 
Reference 6, Luo et al. in Reference 11 utilize deep 
learning methods such as an auto encoder, artificial 
neural network (ANN) and CNN to provide early 
detection on impulse responses from time waveforms 
from the bearings of rotors. Lepine et al. in Reference 
8 also aim to detect the impulse response (i.e., shocks) 
in vibration signals by using the support vector 
machine (SVM) machine learning method but this 
is for road vehicles. The research above have all done 
excellent work on solutions for specific problems on 

specific machines, as is the case for the CMAS solu-
tion discussed in this paper. However, no research was 
found utilizing machine learning for solving universal 
vibration analysis problems related to predictive main-
tenance for industrial machinery.

Except for machine learning, other state-of-the-art, 
high-quality research in vibration analysis is discussed 
in References 5, 12 and 21. The research5 focuses 
on monitoring bearing condition in low- and medi-
um-speed shafts by using the cepstrum, minimum 
entropy deconvolution, and kurtosis methods on pre- 
processing and feature extraction. The research21 
utilizes enveloping and principal component analysis 
(PCA) techniques to estimate the bearing condi-
tion and predict the bearing life. McDonald et al. in 
Reference 12 utilize a narrow band filter on different 
frequency bands to scan the time waveform signal 
and calculate the related kurtosis (for the purpose of 
deconvolution) to detect the impulse-like vibration 
which is associated with most bearing and gearbox 
potential faults.

Approach 

Machine Learning Exception System for RDCA — The pro-
posed machine learning exception system for RDCA 
has a schema per Fig. 1. The OSVM model was 
trained for each measurement location individually. 
Each measurement on the measurement location was 
defined as a measurement event (ME). The first step 
(pre-processing of raw data) excludes all data with 
a negative label on each ME so all remaining data 
is healthy data with a positive label. A measurement 
location with at least two years of historical data 
typically have more than 20 positive MEs. However, 20 
data points are not enough for training a model. So, a 
search had to be conducted over a larger data set con-
sisting of 214,303 signals from eight different large-
scale and similar mills to find 100–200 spectra with 
similar morphology for each of the original 20 MEs. 
In this case, the search resulted in providing between 
2,000 and 4,000 additional data points for training, 
which was sufficient to enable the OSVM to converge 
and guarantee ample training data set diversity. 

Search Method Based on Correlation: According to the 
unique characteristics of data analysis on vibration 
signals, both the amplitude and morphology of the 
spectrum are very important, e.g., unbalance, mis-
alignment and looseness usually exhibit as maximum 
peak amplitudes rising in the spectrum. However, 
some early stage bearing issues will not show as one 
of the highest peaks, but will change the morphol-
ogy of spectrum as a rising high-frequency noise 
floor. Consequently, ITR used a searching method 
to find the signals in the database with similar peak 
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amplitude and morphology. An error tolerance Te 
was set on the maximum peak amplitude and used to 
define the maximum acceptable tolerance, according 
to Eq. 1, where Pt is the maximum value and Rp is the 
maximum value range.

Rp = Pt ∙ (1 ± Te)

(Eq. 1)

Utilizing the correlation defined in Eq. 2, ITR 
calculated the morphology similarity r between t and 
signals d.

r
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A threshold Tr was set. If the signal had its maxi-
mum value in the range Rp and has an r larger than 
Tr , it met the requirement as candidate training data.

OSVM Machine Learning Classifier: As is generally known, a 
beneficial characteristic of binary SVM is that it can 

create a non-linear decision boundary by 
projecting the data through a non-linear 
function φ to a space with a higher dimen-
sion. The data points are lifted from the 
original space I into a feature space F 
at a higher level where a straight hyper-
plane can divide the data into classes. 
This straight hyper-plane can then be 
projected back to original space I to form 
a non-linear curve as Fig. 2a. The hyper-
plane separated by the two classes can be 
represented by ωT + b = 0, ω ∈ F and b ∈ R. 
The decision function (classification) rule 
for a data point x is:
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(Eq. 4)

In machine learning, one-class classi-
fication tries to identify objects of a spe-
cific class amongst all objects primarily 
by learning from a training set contain-
ing only the objects of that class.15 The 
most obvious difference between binary 
SVM and OSVM is the data for training. 
During the training of binary SVM, data 
with positive labels and negative labels 
are given (e.g., in Fig. 2a, the positive data 
are blue circles and the negative data are 
red stars). For training the OSVM, only 
one-class data with positive labels are 
given and an outlier detection function 
MAD in Eq. 5 needs to be processed on 
the data to sacrifice a small amount of 
data as outliers (the red crosses in Fig. 2b). 

System schemata for route-based data collection and analysis (RDCA).

Figure 1

Illustration of support vector machine (SVM) (a) and one-class SVM (b).

Figure 2

(a)	 (b)

http://www.aist.org


AU
G 

20
22

  I 
IR

ON
 &

 S
TE

EL
 T

EC
HN

OL
OG

Y 
I A

IS
T.O

RG

140 Technical Article

The outliers can be used as negative data 
and a SVM can be fit to the data as the 
regular binary SVM. A decision bound-
ary is formed as the red circle in Fig. 2b. 
The boundary can be expanded or con-
tracted accordingly by tuning the fraction 
between the outlier and desired data. The 
same decision functions shown in Eqs. 3 
and 4 are used to calculate whether new 
data points are out of the boundary (the 
data may indicate machine fault) or inside 
the boundary (the data are OK and do not 
need a further analysis).

MAD = median(|Ai – median(A)|)

(Eq. 5)

Decision-Making Combined With Traditional 
Threshold: Unique decision-making 
schemes are applied separately to the 
velocity spectra and acceleration spectra. 
For the velocity spectra, analysts are more 
concerned with both the maximum peak 
value at multiples of the shaft speed as 
well as the harmonics occurring through-
out the spectra. Harmonics directly affect 
the morphology of the data. The decision-
making for velocity spectra checked the 
statistical peak values extracted from his-
torical positive labeled data using Eq. 6, in 
which Ts is the threshold for peak values, 
µ is the mean value extracted from his-
torical “OK” spectra, and σ is the related 
standard deviation. OSVM was also used 
to evaluate the morphology. For the accel-
eration spectra, analysts are more interest-
ed in high-frequency peaks (which may be 
low in amplitude) and the high-frequency 
noise floor. Potential faults exhibit more 
in the shape of the acceleration data than the highest 
peaks. This is the reason only OSVM is used.

If the algorithms using OSVM return a result show-
ing morphology change or a peak value exceeding 
the statistical threshold in Eq. 6, the current velocity 
spectrum under testing is classified as “Need Further 
Analysis.”

Ts = μ + 2σ

(Eq. 6)

The algorithms evaluating the acceleration spec-
tra only consider the OSVM result for morphology 
change because the critical peak values of concern 
are often low amplitude but have a raised high-
frequency noise floor and harmonics across the full 

spectrum, both of which may indicate a potential 
issue. Both of these cases have a dramatic change on 
spectrum’s morphology and this is detected by OSVM.

Using Semantic Analysis to Purify the Training Data That Can 
Be Expanded or Contracted: As a practicality of being a 
predictive maintenance service provider, ITR experts 
frequently label machines as “OK” but indicated some 
minor issues in their report; e.g., “The harmonics on 
inboard motor increased, but no immediately prob-
lem. Let’s have a look at the next reading.” This type 
of reporting is valuable to the customer because it 
notifies them of future potential problems, it is being 
trended, and no action is yet necessary. But for the 
purpose of training machine learning models, the 
associated data with this reporting usually has some 
signatures to machinery faults and can lead to “minor” 

System schemata for condition monitoring and analysis systems (CMAS).

Figure 3

Illustration of convolutional neural network (CNN) further classification 
and aggregating logic.

Figure 4
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false positives. In these cases, a machine learning 
technique was utilized to design a semantics analysis 
model. This model can process the experts’ reports 
and classify them into “100% OK” data and “Not 100% 
OK” data. Fig. 5 illustrates how the semantics analysis 
model captures the sensitive phrases and delineates 
between 100% OK and Not 100% OK data from the 
language of prior analysis from experts. During the 
training or retraining for the OSVM models, these 
Not 100% OK data will be excluded out in the train-
ing set. This approach significantly increased the 
accuracy of the machine learning exception system 
and boosted the efficiency of the training or retrain-
ing process while still avoiding type II errors.

Convolutional Neural Network Further Classification: CNN, 
a class of deep neural networks, is very common in 
analyzing visual imagery. Based on the shared-weights 
architecture and translation invariance character-
istics,22 CNN has applications in image and video 
recognition, recommender systems,20 image classifi-
cation, medical image analysis and natural language 
processing.4

Based on CNN, the function of the machine learn-
ing exception system was expanded. In addition 
to classifying data as Need Further Analysis or No 
Analysis Needed, the system now also provides infor-
mation on the nature of identified issues for each 
measurement location (ML, see Fig. 4). By leverag-
ing the advantage of CNN for image classification or 
recognition, the issues within each spectrum can be 
always identified, no matter how relevant feature data 
moves (left or right), twists or is magnified. Where 
previously each ML used separate OSVM models, all 
MLs use one general CNN model for signature recog-
nition and issue identification. Four types of issues are 
currently identifiable with this method: machine or 
component looseness (high-shaft-speed peak or har-
monics), coupling issues (high axial vibration, includ-
ing issues related to misalignment), high-frequency 
peak issues (electrical or load-related problem, some 
gear mesh-related issues, lobe pass issues, etc.), and 
high wide-band vibration (raised noise floor in the 
high-frequency range related to mid- to late-stage 
bearing issues) (see Fig. 6). With the data associated 
with each ML and asset (e.g., motor, fan, compressor, 

Signatures view.

Figure 6

Pickle line tandem cold mill.

Figure 7

Using semantic analysis model identifying Not 100% OK Data.

Figure 5
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velocity or acceleration spectrum, etc.), a logic algo-
rithm was developed to aggregate the issues identified 
for each measurement location and generate a diag-
nosis for each machine with severity (one star, two 
stars or three stars, which represent the minor issue, 
the moderate issue, and the severe issue, respectively). 
The machine’s diagnosis also has one or more labels: 
bearing vibration, coupling, load or process issue, 
looseness, and abnormal signal. The aggregating 
logic is based on the results from prior expert analysis. 
When multiple different signatures are identified on 
various measurement locations, the algorithm evalu-
ates each signature’s severity and outputs up to two 
of the most severe issues. Using the aforementioned 
semantic analysis technique, the exception system 
also generates a simple report for each machine.

Confidential Score Generation: A customized Sigmoid 
function (Eq. 7 and Eq. 8, in which x is the classifi-
cation scores from OSVM and n is the parameter to 
adjust the slope of the curve in Sigmoid) was devel-
oped to apply a confidential score to the exception 
system. The higher the score is, more likely the ML is 
properly categorized as Need Further Analysis.

S x
e

e

x

x( )=
+1

(Eq. 7)

Score = 2 ∙ (1 – S(x ⁄n))

(Eq. 8)

By implementing a threshold on these confidential 
scores, it allowed for the sensitivity of the machine 
learning exception system to be manually adjusted.

Impulse and Harmonics Detection for CMAS — A CMAS has 
both advantages and disadvantages over an RDCA. 
The advantage is considerably more data; in this test 
case, data is collected every few minutes continually. 
The disadvantage is the lack of verified expert analy-
sis correlated to the majority of the data. Traditional 
feature thresholds such as RMS, peak, and crest factor 
are used and are effective when the fault is already 
in late stages or is well developed. But this approach 
often fails to detect minor faults in early stages or 
faults on variable load and speed machines. It can 
also deliver false positives. Accurate early detection is 
very important to maintenance and reliability profes-
sionals to enable preventive and corrective mainte-
nance planning. According to References 3, 11 and 
19, impulses in time waveforms and harmonics in 
spectra are good indicators of early minor machine 
faults. For the PLTCM CMAS, impulses repeating in 
the time waveform and harmonics in spectrum relate 

to spalls on the work and backup rolls and early bear-
ing issues. These issues result in fifth-octave chatter, 
causing unacceptable product quality. As shown in 
Fig. 3, by leveraging the customized feature extrac-
tion for impulse and cepstrum (OSVM and DTM), the 
method deployed to the CMAS on the PLTCM stands 
detected the impulses in the time waveform and the 
harmonics in the spectra accurately and without any 
false alarms. This was verified over 12 months of test-
ing in 2019–2020.

As the structure in Fig. 7 shows, the PLTCM is 
a mill system consisting of three to six mill stands, 
each stand consisting of work rolls, intermediate rolls 
and backup rolls arranged in series to progressively 
reduce the thickness of the strip in a single pass. Most 
products produced by a PLTCM are cosmetic and 
surface quality is extremely important. The PLTCM is 
extremely sensitive to changes in vibration since unac-
ceptable vibration can cause surface defects resulting 
in product that will not be accepted by the customer.

Due to the complexity and the overall geometry 
of the PLTCM, the best sensor placement available 
for the system and objectives is on the top of the 
stand. The accelerometer senses the vibration from 
the three sets of rolls on the stand (work, intermedi-
ate and backup rolls) and the bearings for each roll. 
The PLTCM operates as a variable load and speed 
mill and produces several different product types. 
Vibration amplitudes and frequencies vary greatly. 
Consequently, the setting of thresholds for RMS, peak 
and crest factor are very difficult. On the other hand, 
the PLTCM structure is very sensitive and intercon-
nected. Because of the compact positions of the work, 
for intermediate and backup rolls in series, if one of 
them develops a fault, a vibration may transmit to 
other parts and lead to more severe machine failures 
in a short time and adversely affect product quality. So, 
it is important to continuously monitor the impulses 
in the time waveform (related to chatter) and har-
monics in spectrum (related to bearing issues, also 
potentially influencing chatter).

Customized Repeating Impulse Detection for Time Waveform: 
Utilizing Pan Tompkins peak detection method in 
Reference 16, the spikes in any time waveform can 
be easily located. However, since the algorithm is too 
sensitive, the spikes of the noise floor are also marked. 
Most of the unwanted spikes are filtered out with the 
enveloping technique and the customized dynamic 
thresholds set on the averaged value of n maximum 
values in time waveform and the minimum distance 
between adjacent spikes calculated from the rolls’ 
speeds in Eq. 9 (in which vw is the speed of work roll, 
vi is the speed of intermediate roll, vb is the speed of 
backup roll, fs is the sample rate for the target time 
waveform).
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(Eq. 9)

The picture at the top of Fig. 8 is the original time 
waveform and the picture at bottom is the normalized 
signal after enveloping. With the dynamic threshold 
Tamplitude set on spike amplitude and the threshold Tdist 
set on minimum distance between adjacent peaks, 
these repeating spikes are located accurately. Through 
a window of locspike ± 1/2 in which locspike is the spike’s 
location and l is the window length, the impulses can 
be defined individually. The crest factors (CF = xpeak/
xrms) for each window can also be calculated and aver-
aged to get an averaged CFavg. By setting a threshold 
on this averaged crest factor, most of the impulses that 
are not relevant are eliminated.

The standard deviation of the distances of every two 
adjacent spikes, the number of spikes and the aver-
aged raw signal after normalization in each window 
were extracted as features for training the machine 
learning OSVM. Repeating impulses were detected if 
the OSVM returns a positive (the positive is different 
here from the one in the Machine Learning Exception 
System for RDCA section; because the algorithm used 
the time waveform with repeating impulses to train 
this OSVM, the positive result means the OSVM clas-
sified the data into “repeating impulses”).

Cepstrum-Based Harmonics Detection Method: The harmon-
ics of interest are visible in the top picture in Fig. 9. 
Although the overall amplitude is very small (because 
the measurement point is far away from the vibra-
tion source, the maximum peak has only 0.004 inch/
second, or 0.102 mm/second), the harmonics are still 
seen very clearly. These harmonics usually relate to 
the roll bearing defects (work roll, intermediate and 
backup roll shown in Fig. 7). Traditional thresholds 
on RMS and crest factors did not work well enough 
for identifying this “harmonics” issue. However, ceps-
trum can combine and concentrate the energy of 

these harmonics, resulting in differentiated “harmon-
ics” and “not harmonics” by threshold. Cepstrum is 
defined as follows: the squared magnitude of the 
inverse Fourier transform of the logarithm of the 
squared magnitude of the Fourier transform of a 
signal:1,14 Cepstrum = |F –1{log(|F {f(t)}|2)}|2. First, the 
signal is normalized. After normalizing, the log of 
the spectrum is calculated, which makes the signal 
more periodic (more like a sinusoidal/cosine signal). 
And the inverse FFT projects the logarithmic signal 
back to a signal in the cepstrum’s time series and the 
harmonics tend to concentrate into one or several 
high spikes, as the picture at the bottom of Fig. 9 
shows. However, the non-linearity of the logarithmic 
signal sometimes will lead to more than one spike in 
the projected signal. To further increase the accu-
racy of this harmonics detection method, an adaptive 
threshold scheme was applied for relating these spikes’ 
amplitudes to bearing defects. Using an equation 
similar to Eq. 9, the window size of the red rectangle 
in Fig. 9 was determined. In the window, two different 
thresholds for the maximum spike amplitude and the 
sum of the spike and its harmonics (the spikes at 2x, 
3x, etc.) were set. If either the dominating spike or the 
sum of this spike and its harmonics exceeds one of 
the established thresholds and the spike’s location is 
relevant to one of the bearing defect frequencies, the 
system identifies a potential issue. The calculation to 
determine if there is relevance is Eq. 10. b is the func-
tion for bearing defect frequencies given the dimen-
sion of the roll and machine speed (e.g., diameter of 
rolls, diameter of bearing rollers, number of bearing 
rollers, strip speed, motor speed, etc.). dwork, dint and 

Impulse detection on time waveform.

Figure 8

Harmonics and corresponding cepstrum.

Figure 9
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dback are dimensions of work roll, intermediate roll and 
backup roll, respectively. υ is the motor speed. fs is the 
sampling rate of time waveform. l is location of the 
spike at front in the cepstrum:

f
l

d d ds
work backÎ ( ) ( ) ( ){ }b u b u b u, , , , ,int

(Eq. 10)

Dynamic Trust Model: Because of the continuous moni-
toring characteristics of the CMAS and the impor-
tance of avoiding false alarms, both issues of repeat-
ing impulses or harmonics will lead to a repeating 
abnormality, meaning more than one abnormal sig-
nal will keep showing up uninterrupted, and this 
situation will always exist before the machine fault is 
corrected. In this case, for the purpose of minimizing 
false alarms, the algorithm used a fluctuating trust 
score that adjusts according to the signal detected as 
described in Algorithm 1; e.g., if the signal is abnor-
mal and has repeating impulses or harmonics, the 
score will drop; if not, the score will climb or stay at its 
maximum level. An alarm/notification was sent out 
only if the score dropped below the threshold. This 
approach ensured no false alarms were given and the 
timeliness delays (from the DTM evaluation) were 
negligible. This trust score system (DTM) has already 
been broadly used in continuous authentication sys-
tems based on biometrics.2,9,10,13

Evaluation and Result 

Performance of Machine Learning Exception System for RDCA 
— For RDCA, 17,962 OSVM models were trained on 
17,962 measurement location points across several 

Algorithm 1

    Input: �S represents the trust score, T represents 
the alarm threshold, Smin represents the 
minimum of the score, Smax represents 
the maximum of the score, R is the 
result from OSVM or adaptive threshold 
system

    Output: alarm_or_not (True or False)
1 	 Set the initial trust score S ← Smax;
2 	 if S > Smin and R is abnormality then
3	 |	 S − −;
4 	 else if S < Smax and R is normality then
5	 |	 S + +;
6 	 if S < T and R is abnormality then
7	 |	 alarm_or_not ← True;
8	 |	� Alarm is raised, system will send an notifica-

tion to human analyst;
9	 else
10	 |	 alarm_or_not ← False;
11	 end
12	� Go back to Step 2 with the updated R on the 

new coming in signal;

Performance for identifying “OK.”

Figure 10

Performance for classifying diagnosis.

Figure 11
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mills with more than two years of historical data. The 
exception system generated two possible results on 
testing spectra (0–833 Hz for velocity spectra and 
0–4,167 Hz for acceleration spectra). After going 
through the aggregating logic, the possible diagnosis 
for each of 1,932 machines include:

	 •	OK: The signal from all measurement locations 
on this machine has a high similarity on both 
morphology and amplitude with some of the 
historical positive labeled (OK) data, and the 
machine does not need further analysis by an 
expert.

	 •	Need Further Analysis: The one or more mea-
surement location signals from the current 
machine do not match with any of the histori-
cal positive labeled data, has a very high pos-
sibility of indicating a potential machine fault, 
and needs further analysis by an expert. If the 
machine is identified as Need Further Analysis, 
it will be further diagnosed as having one or 
more of the following conditions:
	 –		�Bearing Vibration: Higher noise floor 

or obvious harmonics related to bearing 
defects present in acceleration measure-
ment locations. Recommendations often 
include lubricating or replacing the bear-
ing, depending upon severity.

	 –		�Coupling: It is also called Misalignment and 
often lets the velocity measurement location 
signal have higher shaft speed peak and 
more obvious shaft speed peak’s harmonics 
in the axial direction. It is usually suggested 
that the customer check the alignment and 
correct the coupling issue.

	 –		�Load or Process: Characteristics include 
higher gear mesh, lobe pass or fan pass in 
non-motor measurement locations. When 
severity is minor, recommendations include 
decreasing machine loading, when possible. 
When severity is higher than moderate, rec-
ommendations include detailed inspections 
and possible repairs.

	 –		�Looseness: Similar to coupling issues, how-
ever, characteristics include higher shaft 
speed peaks and harmonics present in radi-
al directions but not in the axial direction. 
Recommendations include checking for soft 
foot, loose bolts or other looseness-related 
corrections.

	 –		�Signal Abnormal: Related to quality of data, 
the system’s pattern recognition capabilities 
include identifying sensor and cable issues 
that indicate bad data. Recommendations 
include remeasurements or repair/replace-
ment (RDCA) or replacement (CMAS).

Fig. 10 presents the machine learning exception sys-
tem’s performance for identifying “OK” and “Not OK.” 
During the period of December 2020 to February 
2021, 956 machines were tested. Among the 729 OK 
machines, the exception system outputs only mis-
classified one Not OK machine as OK. In this case, 
the true positive rate for predicting OK machines is 
99.9%. The one misclassified machine here had a 
minor Looseness issue, which is an event on the mar-
gin between OK and Not OK. Additionally, the excep-
tion system output 227 machines as Not OK. Only 113 
were truly Not OK, which results in a true negative 
rate of 49.9%. However, considering the situation that 
data analysts often indicate some minor issue in the 
report but label the machine as OK (mentioned in the 
Using Semantic Analysis to Purify the Training Data 
section) and the objective is designing an exception 
system with a 100% true positive rate, the relatively 
low true negative rate is acceptable. Summarizing, 
among the 956 machines tested, the machine learn-
ing exception system labeled 728 (76.15% of all) 
machines as OK with a 99.9% accuracy.

Among the 113 Not OK machines, the exception sys-
tem diagnosed them further and assigned condition 
codes. Fig. 11 shows the system performance results. 
The exception system outputted 50 Bearing Vibration 
classifications; 47 of them are classified correctly. One 
machine was misclassified into the Coupling category, 
and two machines were misclassified into Load or 
Process. There were eight Coupling classifications 
from the exception system; five of them are classi-
fied correctly and three of them were misclassified as 
Looseness. Among 17 Load or Process classifications, 
four were misclassified. There were 35 Looseness clas-
sifications; all but two were correctly classified. Finally, 
there were three Signal Abnormal classifications, all 
without any error. Combining the results, the rate of 
correct classification was 89.4%.

This machine learning exception system is imple-
mented in production environments and performing 
well. Fig. 12 shows output from a future artificial 
intelligence (AI) exception system currently in devel-
opment and testing that takes the production system 
one step further. This system uses the severity deter-
mination (none, one star (minor issue), two stars 
(moderate) or three stars (severe)) and diagnosis to 
also generate an expert report based on historical 
findings language. As a representative example of 
the current results from the system, the left column 
in the figure is the output of the AI exception system, 
and the right column is the report and diagnosis of 
ITR experts. Testing has shown the system generates 
similar diagnoses and correctly identifies the asset 
components and associated measure locations but 
with fewer details. As designed, it tends to diagnose 
more issues with higher severity. Based on early per-
formance, further development is ongoing and it is 
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expected this additional system will be deployed to 
production environments in the near future.

Performance of Impulse and Harmonics Detection for CMAS — 
Due to the tremendous amount of data collected by 
a CMAS, it is impossible for experts to analyze every 
spectrum, waveform and feature set collected and 

processed as was the case with the RDCA. However, 
the CMAS has its own notification system. If any mon-
itored feature parameters, e.g., overall RMS, banded 
RMS, peak values or crest factor, exceed the pre-set 
threshold, it sends a notification to the expert (or any 
interested party). As mentioned in the Impulse and 
Harmonics Detection for CMAS section, the thresh-

old on these signa-
tures do not work 
well on the early-
stage problems 
related to repeating 
impulse and har-
monics. Leveraging 
the unique feature 
extraction, the 
machine learn-
ing classifier (the 
OSVM and DTM 
system) and the 
impulse and har-
monics detec-
tion program, the 
CMAS successfully 
detected 19 bear-
ing issue and 41 
spall issues related 
to chatter over 24 
months, as shown in 
Table 1. The bear-
ing issue was diag-
nosed from har-
monics within the 
spectrum, and the 
spalling issues were 
diagnosed from 
repeating impulses 

Report generation function exhibition.

Figure 12

Impulse detection notification example.

Figure 13

Repeating impulses example.

Figure 14

Table 1
Impulse and Harmonics Detection Result on PLTCM 
for January 2019–March 2021

No. of measure-
ment events 

tested

Harmonics 
detected 

(bearing issue)

Impulse 
detected 
(spalls)

False 
alarms

Missed 
problems

315,988 19 41 2 0
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in the time waveform. From January 2019 through 
March 2021, 315,988 MEs were tested. The model 
operated successfully without any missed problems 
and detected many harmonics events and impulse 
events for all five stands of the tandem mill within 
the PLTCM. Two false alarms were generated over the 
24 months, but after investigation, these false alarms 
were attributable to problems with damaged sensor 
and cable connections, resulting distorted signals.

Fig. 13 is an example showing one of the notifica-
tions sent to the expert for repeating impulses. The 
notification was sent out on 20 February 2019 at 
10:21:26 p.m. EST on measurement location 165528 
#2 stand mill drive on PLTCM with a DTM score of 
94, which is lower than the alarm threshold and the 
source of impulse is the backup roll. The plot for the 
time waveform in the notification email has very obvi-
ous prominent repeating impulses. The expert who 
received the email notification analyzed the data and 
verified that the finding was correct. Fig. 14 shows the 
repeating impulses beginning in the time waveform at 
9:55:38 p.m., but the machine was running at a rela-
tively low speed of 295–336 rpm and the overall RMS 
is 0.007–0.014 Gs. This initial impacting had already 
dropped the score in the DTM but it was still above 
the alarm threshold. At 10:21:26 p.m., the machine 
was running at a high speed of 959 rpm and the 
impulses were causing both RMS and the crest factor 
to increase. At this time, the uninterrupted time wave-
form with repeating impulses caused the DTM score 
to drop below the alarm threshold. This initiated an 
exception notification. Once the expert confirmed 
the finding, the mill was immediately notified of the 
issue, including the specific source of the problem on 
the backup roll. Instead of continuing to run 40–50 
additional coils with chatter marks before inspection, 
the mill was able to stop, change the backup rolls and 
only scrap a partial coil.

The success of the spall detection relies on both 
impulse and harmonics detection by the CMAS and 
the experienced expert’s quick reaction. This auto-
matic machine learning detection system integrated 
with an expert analyst makes ITR’s system truly capa-
ble of very minor false alarms, 100% detection rate 
and quick notification.

Future Work 

The work described in this paper has achieved the 
intended objectives of creating a multi-layer scheme 
for classifying general machine condition and further 
classifying conditions, severity, and recommended 
actions. Based on the positive results, ITR will fur-
ther test, refine, expand and deploy these models. 
Additionally, the new models will include data mining, 
deep learning techniques, and unsupervised machine 

learning feature extraction (e.g., Autoencoder, PCA 
and independent component analysis) to find the 
hidden features for these subsets. This will not only 
improve response times, but it will also help improve 
the precision of recommended actions.

For the impulse and harmonics detection for the 
CMAS, ITR has already realized a customized method 
on the PLTCM and it continues to return excellent 
results. In the future, ITR will expand this method to 
other installed CMAS and incorporate this technol-
ogy into new system installs. ITR has begun work to 
extend these models to other asset types, tailored to 
the potential failure modes specific to the particular 
operation.

Lastly, the machine learning exception models 
developed for RDCA will be refined for CMAS. DTM 
will be used to boost the true negative rate. The 
CMAS exception system will capture abnormal mea-
surement events and send alarms (exception notifica-
tions) with diagnosis and severity suggested by AI to 
experts or operators in real-time to realize a 24/7 and 
more precise monitoring and diagnosis.
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